Manufacture and Performance of Particulate Reinforced Titanium Matrix Composites

2003 ◽  
Vol 249 ◽  
pp. 205-210 ◽  
Author(s):  
X.N. Zhang ◽  
R.J. Wu
Wear ◽  
2014 ◽  
Vol 318 (1-2) ◽  
pp. 68-77 ◽  
Author(s):  
Bong-Jae Choi ◽  
IL-Young Kim ◽  
Young-Ze Lee ◽  
Young-Jig Kim

2018 ◽  
Vol 875 ◽  
pp. 41-46 ◽  
Author(s):  
Yue Ying Li ◽  
Fu Wen Zhu ◽  
Zhen Liang Qiao

TiB2 particulate reinforced titanium matrix composites were prepared by mechanical alloying and spark plasma sintering. Volume fraction of TiB2 powders in the composites are 5%, 10%, 15%. The effect of milling time and the volume fraction of reinforcement on microstructure and properties of the composites were studied. The results show that with increasing milling time, the size of powder particles decreases, quantity of them increases, and microstructure of the sintered samples becomes finer and more uniform. When milling time reaches 30h, the trend of powder agglomeration increases, the downward trend of the particle size becomes slowly. With the milling time, the density of titanium matrix composites is on the rise. The density of 10vol%TiB2 particulate reinforced titanium matrix composites can reach 4.799 g/cm3, with 30h milling time and sintering at 900°C. The density and hardness of the composites increase with increasing the volume fraction of TiB2. When the volume fraction of TiB2 is 15%, after milling 10h and sintered at 800°C, the density and hardness of the composites can reach 4.713g/cm3 and HV851.58.


2007 ◽  
Vol 534-536 ◽  
pp. 825-828 ◽  
Author(s):  
F. Romero ◽  
Vicente Amigó ◽  
M.D. Salvador ◽  
E. Martinez

Particulate reinforced titanium composites were produced by PM route. Different volumetric percentages of TiN reinforcements were used, 5,10,15 vol%. Samples were uniaxially pressed and vacuum sintered at different temperatures between 1200-1300°C. Density, porosity, shrinkage, mechanical properties and microstructure were studied. Elastic properties and strength resistance were analysed by flexural strength and tension tests, and after the test, fractured samples were analysed as well to obtain the correlation between the fracture, interparticular or intraparticular, and the level of reinforcement addition. Hardness and microhardness test were done to obtain a better understanding of its mechanical properties. In order to study wear resistance pinon- disc tests were conducted. In addition, the influence of temperature, the reactivity between matrix and reinforcement on microstructural development were observed by optical and electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document