Mesoscopic Study of Ductile Fracture of Aluminium Alloy LY12CZ

2004 ◽  
Vol 261-263 ◽  
pp. 45-50
Author(s):  
T. Li ◽  
Qing Yuan Wang ◽  
X.M. Yuan

In the present paper, axisymmetric smooth and notched specimens of aluminium alloy LY12CZ were monotonic tension tested to study the ductile fracture behavior and evaluate the suitability for the critical void growth ratio, VGC of the material, from the micro and macro points of view. It's found that the material would change fracture morphology from tensile to shear failure in the various stress states; the ductile fracture parameter VGC is sensitive to the fracture morphology which is applicable for the case of tensile failure while not suitable for the case of the shear failure, i.e. the case of smooth tensile specimens.

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4019
Author(s):  
Wang ◽  
Weijermars

This study presents a new interface for wellbore stability analysis, which visualizes and quantifies the stress condition around a wellbore at shear and tensile failure. In the first part of this study, the Mohr–Coulomb, Mogi–Coulomb, modified Lade and Drucker–Prager shear failure criteria, and a tensile failure criterion, are applied to compare the differences in the critical wellbore pressure for three basin types with Andersonian stress states. Using traditional wellbore stability window plots, the Mohr–Coulomb criterion consistently gives the narrowest safe mud weight window, while the Drucker–Prager criterion yields the widest window. In the second part of this study, a new type of plot is introduced where the safe drilling window specifies the local magnitude and trajectories of the principal deviatoric stresses for the shear and tensile wellbore failure bounds, as determined by dimensionless variables, the Frac number (F) and the Bi-axial Stress scalar (χ), in combination with failure criteria. The influence of both stress and fracture cages increases with the magnitude of the F values, but reduces with depth. The extensional basin case is more prone to potential wellbore instability induced by circumferential fracture propagation, because fracture cages persists at greater depths than for the compressional and strike-slip basin cases.


1952 ◽  
Vol 19 (1) ◽  
pp. 54-56
Author(s):  
F. A. McClintock

Abstract A statistical analysis is developed to show how a microscopic shear failure can result in the apparent tensile failure of polycrystalline iron in rotary bending fatigue tests.


2019 ◽  
Vol 206 ◽  
pp. 509-525 ◽  
Author(s):  
František Šebek ◽  
Namsu Park ◽  
Petr Kubík ◽  
Jindřich Petruška ◽  
Josef Zapletal

2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Chi Yao ◽  
Sizhi Zeng ◽  
Jianhua Yang

Anisotropy in strength and deformation of rock mass induced by bedding planes and interlayered structures is a vital problem in rock mechanics and rock engineering. The modified rigid block spring method (RBSM), initially proposed for modeling of isotropic rock, is extended to study the failure process of interlayered rocks under compression with different confining pressures. The modified rigid block spring method is used to simulate the initiation and propagation of microcracks. The Mohr–Coulomb criterion is employed to determine shear failure events and the tensile strength criterion for tensile failure events. Rock materials are replaced by an assembly of Voronoi-based polygonal blocks. To explicitly simulate structural planes and for automatic mesh generation, a multistep point insertion procedure is proposed. A typical experiment on interlayered rocks in literature is simulated using the proposed model. Effects of the orientation of bedding planes with regard to the loading direction on the failure mechanism and strength anisotropy are emphasized. Results indicate that the modified RBSM model succeeds in capturing main failure mechanisms and strength anisotropy induced by interlayered structures and different confining pressures.


2016 ◽  
Vol 258 ◽  
pp. 213-216 ◽  
Author(s):  
František Šebek ◽  
Jindrich Petruška ◽  
Petr Kubík

Variety of metals are complex materials exhibiting various behavior under different loading. Many metallic materials exhibit Tresca-like behavior rather than von Mises. It means different behavior in tension under plane strain and uniaxial stress conditions. This might be described by Lode dependent plasticity which should result in better prediction in force or torque responses of material tests. Good agreement between computation and experiment is also very important when calibrating the ductile fracture criteria. Several tests under plane strain and uniaxial stress states were carried out on aluminum alloy 2024-T351 where the Lode dependency was significant. The Lode dependent plasticity was implemented along with von Mises and Tresca-like yield criteria, which resulted in improvement of force–displacement responses of plane strain tests simulations. But it also caused significant change in the stress state of tensile flat and grooved plates which wrongly approached uniaxial tension condition. This inconvenience prevents plane strain experiments from using for calibration of ductile fracture criteria under these circumstances.


2011 ◽  
Vol 99-100 ◽  
pp. 370-374 ◽  
Author(s):  
Yue Hong Qian ◽  
Ting Ting Cheng ◽  
Xiang Ming Cao ◽  
Chun Ming Song

During excavating the problem of unloading is a dynamic one essentially. Assuming the unloading ruled by a simple function and based on the Hamilton principal, the distribution of the stress field nearby the tunnel is obtained. The characteristics of the failure nearby the tunnel are analyzed considering the shear failure and tensile failure. The results show that the main mode of the shear failure, intact and tensile failure occurs from the tunnel. The characteristic of the shear failure, intact and tensile failure are one of the likely failure modes.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tao Yang ◽  
Yunkang Rao ◽  
Huailin Chen ◽  
Bing Yang ◽  
Jiangrong Hou ◽  
...  

Understanding the failure mechanism and failure modes of multiface slopes in the Wenchuan earthquake can provide a scientific guideline for the slope seismic design. In this paper, the two-dimensional particle flow code (PFC2D) and shaking table tests are used to study the failure mechanism of multiface slopes. The results show that the failure modes of slopes with different moisture content are different under seismic loads. The failure modes of slopes with the moisture content of 5%, 8%, and 12% are shattering-shallow slip, tension-shear slip, and shattering-collapse slip, respectively. The failure mechanism of slopes with different water content is different. In the initial stage of vibration, the slope with 5% moisture content produces tensile cracks on the upper surface of the slope; local shear slip occurs at the foot of the slope and develops rapidly; however, a tensile failure finally occurs. In the slope with 8% moisture content, local shear cracks first develop and then are connected into the slip plane, leading to the formation of the unstable slope. A fracture network first forms in the slope with 12% moisture content under the shear action; uneven dislocation then occurs in the slope during vibration; the whole instability failure finally occurs. In the case of low moisture content, the tensile crack plays a leading role in the failure of the slope. But the influence of shear failure becomes greater with the increase of the moisture content.


Author(s):  
Qihan Li ◽  
Chuanwei Xu ◽  
Song Gao ◽  
Fenglei Ma ◽  
Qingming Zhao ◽  
...  

The clinching process is more and more used in automotive design and manufacturing. Traditional quality inspection of joints needs a lot of destructive tests, which is time-consuming and material-consuming. In this paper, the clinching process and joints failure of dissimilar materials, 6061 aluminium alloy and HC340/590DP dual-phase steel, are studied. A two-dimensional finite element model is established. Experiments were carried out to verify the numerical model. Through the axial tensile test, the quality of clinched joints for upper steel-lower aluminium alloy and upper aluminium alloy-lower steel were measured, respectively, and the strength and safety of the joints met the requirements of design indexes. The conventional prediction model of maximum tensile force and its modified model was researched. Combined with numerical simulation results, the fracture load, the separation load, and the failure mode of two clinched joints were predicted, respectively. Furthermore, the results are in good agreement with the experimental results. The results show that the modified prediction model of maximum tensile force has a good prediction result, and the error rate is less than 10%. The modified prediction model of maximum tensile force can effectively predict the tensile failure test results, which provides a basis for the quality evaluation and strength prediction optimization of dissimilar materials clinched joints.


2015 ◽  
Author(s):  
Robert D. Barree ◽  
Jennifer L. Miskimins

Abstract In 1898, Kirsch published equations describing the elastic stresses around a circular hole that are still used today in wellbore pressure breakdown calculations. These equations are standard instruments used in multiple areas of petroleum engineering, however, the original equations were developed strictly for vertical well settings. In today's common directional or horizontal well situations, the equations need adjusted for both deviation from the vertical plane and orientation to the maximum and minimum horizontal in-situ stress anisotropy. This paper provides the mathematical development of these modified breakdown equations, along with examples of the implications in varying strike-slip and pore pressure settings. These examples show conditions where it is not unusual for breakdown pressure gradients to exceed 1.0 psi/ft and describes why certain stages in "porpoising" horizontal wells experience extreme breakdown issues during hydraulic fracturing treatments. The paper also discusses how, in most directional situations, the wellbore will almost always fail initially in a longitudinal direction at the borehole wall, after which the far-field stresses will take over and transverse components can be developed. Tortuosity and near wellbore friction pressure can actually add to forcing the initiation of such longitudinal fractures, which can then have cascading effects on other growth parameters such as cluster-to-cluster and stage-to-stage stress shadowing. Special considerations for highly laminated anisotropic formations, where shear failure of the wellbore may precede or preclude tensile failure, are also introduced. Such failure behaviors have significant implications on near wellbore conductivity requirements and can also greatly impact well production and recovery efforts.


1998 ◽  
Vol 26 ◽  
pp. 370-376 ◽  
Author(s):  
Erik Hestnes

Slushflows — flowing mixtures of water and snow — are a major natural hazard in Norway. Knowledge gathered by the Norwegian Geotechnical Institute during 25 years of slushflow consulting and research is presented. The variation in regional occurrence is described and related to climatic premises and ground conditions. The principal ideas about slushflow release, down-slope propagation and run-out are outlined. They are closely related to the rate and duration of water supply, snowpack properties and geomorphic factors. Slushflow release is caused by basal shear failure aided by water pressure to cause loss of basal support and finally tensile failure through the snowpack. Our methods of hazard evaluation and acute-hazard prediction and warning are summarized, including the estimation of water supply based on meteorological data. The results of a worldwide questionnaire on slushflows, literature studies and scientific contacts, indicate that slushflows occur in all countries having a seasonal snow cover and that the results of our studies in Norway have a general validity.


Sign in / Sign up

Export Citation Format

Share Document