Wear of Resin Composites Polymerized by Conventional Halogen Light Curing and Light Emitting Diodes Curing Units

2005 ◽  
Vol 288-289 ◽  
pp. 645-648
Author(s):  
Hwan Kim ◽  
Sung Ho Park ◽  
I.Y. Jung ◽  
S.B. Jeon ◽  
Kwon Yong Lee

In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion of sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji ı LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji ıLC specimen was the greatest among all resin composites. Dyract AP showed less wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as curing unit for composite resin restorations.

Author(s):  
Anuradha Vitthal Wankhade ◽  
Sharad Basavraj Kamat ◽  
Santosh Irappa Hugar ◽  
Girish Shankar Nanjannawar ◽  
Sumit Balasaheb Vhate

Introduction: New generation composite resin materials have revolutionized the art of aesthetic dentistry. The clinical success is dependent on effective polymerisation and surface hardness which in turn are dependent on the performance of Light Curing Units (LCU). This study utilises surface hardness as a measure of degree of polymerisation of composite resins achieved by LCUs. Aim: To evaluate the difference in surface hardness of nanohybrid and microhybrid resin composites cured by light curing systems, Light Emitting Diode (LED) and Quartz Tungsten Halogen (QTH). Materials and Methods: In this invitro experimental study, two types of hybrid composites (Nanohybrid and Microhybrid) were tested for surface hardness by using two different light curing systems (LED and QTH). All the Nanohybrid and Microhybrid specimens were cured using LED and QTH LCUs, thus giving four combinations. A total of 60 specimens (6 mm diameter and 2 mm depth) were prepared using Teflon mould with 15 samples for each combination. Surface hardness was measured on upper and lower surface after 24 hours and hardness ratio was calculated. Data was analysed using independent t-test for intergroup comparison. Level of significance was kept at 5%. Results: Surface hardness of resin composites cured by LED LCU was greater than those cured by QTH LCU. Additionally, the hardness value was greater for the upper surface. Nanohybrids showed better surface hardness than Microhybrids for both the LCUs. Conclusion: Nanohybrid composite resins and LED system were found to be more effective in terms of surface hardness as compared to their counterparts.


2019 ◽  
Vol 8 (8) ◽  
Author(s):  
Luiz Henrique Soares Torres ◽  
Luiza Monzoli Covre ◽  
Caio Pimenteira Uchôa ◽  
Déborah Laurindo Pereira Santos ◽  
Renato Torres Augusto Neto ◽  
...  

As resinas compostas fotopolimerizáveis têm tido cada vez mais indicações na odontologia restauradora devido às vantagens que apresentam. Porém variações na técnica de fotoativação, densidade de energia, intensidade da luz e tempo de irradiação podem gerar polimerização incompleta, o que pode resultar em uma resina composta com alta porosidade, pouca dureza, baixo polimento, alta capacidade de pigmentação ou efeitos tóxicos na polpa. Este estudo tem por objetivo analisar o efeito do tempo de polimerização na pigmentação extrínseca de três resinas compostas fotopolimerizáveis. Utilizando uma fonte de LED, foram confeccionados 180 espécimes de resina composta microhíbrida, nanohíbrida e nanoparticulada, com diferentes protocolos de polimerização. Os espécimes foram subdivididos em grupos de acordo com o agente pigmentante. Com o uso de um colorímetro, foram analisados quanto à mudança de cor (ΔE). Os dados foram submetidos ao teste ANOVA e Duncan (α=0,05). A resina composta microhíbrida apresentou os menores valores de ΔE em comparação à nanoparticulada e à nanohíbrida quando imersos em vinho. Quanto maior o tempo de polimerização menores valores de ΔE foram obtidos. Não somente o tempo de polimerização influencia no grau de pigmentação, mas também fatores intrínsecos às resinas compostas tais como carga, agente fotoiniciador e matriz orgânica.Descritores: Autocura de Resinas Dentárias; Materiais Dentários; Pigmentação.ReferênciasMatson MR, Matson AMFP. Avaliação do grau de conversão de resinas compostas quando ativadas por luz halógena: método convencional, alta potência e método “soft”. Rev Inst Ciênc Saúde. 2006;24(4):307-11.Delaviz Y, Finer Y, Santerre JP. Biodegradation of resin composites and adhesivesby oral bacteria and saliva: A rationale for new material designs that consider the clinical environment and treatment challenges. Dent Mater. 2014;30(1):16-32.Nahsan FPS, Ueda JK, Silva JO, Schimitt VL, Naufel FS, Formighieri LA et al. Estabilidade de cor de resina composta após imersão em café, água e solução de clorexidina. Rev Bras Pesq Saúde. 2009;11(2):13-7.Al  Kheraif  AA,  Qasim  SS,  Ramakrishnaiah  R,  Rehman  I.  Effect  of different beverages on the color stability and degree of conversion of nano and microhybrid composites. Dent Mater J. 2013;(32)2:326-31.Ceballos L, Fuentes MV, Tafalla H, Martínez A, Flores J, Rodríguez J. Curing effectiveness of resin composites at different exposure times using LED and halogen units. Med Oral Pathol Oral Cir Bucal 2009;14(1):e51-6.Rahiotis C, Patsouri K, Silikas N, Kakaboura A. Curing efficiency of high- intensity light-emitting diode (LED) devices. J Oral Sci.  2010; 52(2):187-95.Sgarbi SC, Pereira SK, Martins JMH, Oliveira MAC, Mazur RF. Degree of conversion of resin composites light activated by halogen light and led analyzed by ultraviolet spectrometry. Rev Clín Pesq Odontol. 2010;6(3):223-30.Caldarelli PG, Beltrani FC, Santos FA, Shibayama R, Hoepper  MG. Manchamento de uma resina composta e sua Relação com o efeito da intensidade da luz Emitida por aparelhos fotopolimerizadores de Lâmpada halôgena. Rev Fac Odontol Aracatuba. 2011;(32)2:44-8.Valentini F, Oliveira SGD, Guimarães GZ, Barbosa RPS, Moraes RR. Effect of surface sealant on the color stability of composite resin restorations. Braz Dent J. 2011;22(5):365-68.Freitas ABDA, Gomes HR, Guimarães FBR, Marinho VA, Barros LM. Influência do tipo de aparelho fotopolimerizador na absorção de água por restaurações de resina composta. Rev Inst Ciênc Saúde.  2008;(26)1:65-9.Porto ICCM, Soares LES, Martin AA, Cavalli V, Liporoni PCS. Influence of the photoinitiator system and light photoactivation units on the degree of conversion  of  dental  composites. Braz Oral Res. 2010;24(4):475-81.Pequeno JHP, Araújo GS, Neri JR, Bomfim AGM, Mendonça JS, Santiago SL. Efeito dos protocolos de fotoativação na dureza de uma resina composta nanoparticulada. ROBRAC. 2012;21(56):394-97.Uhl A, Mills RW, Rzanny AE, Jandt KD. Time dependence of composite shrinkage using halogen and LED light curing. Dent Mater. 2005;21(3):278-86.Eick JD, Kotha SP, Chappelow CC, Kilway KV, Giese GJ, Glaros AG et al. Properties of  silorane-based  dental resins and composites containing    a    stressreducing  monomer. Dent Mater. 2007;23(8):1011-17.Neumann MG, Schmitt CC, Ferreira GC, Correa IC. The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different lightcuring units. Dent Mater. 2006;22(6):576-84.Asmussen   E,  Peutzfeldt   A.   Influence   of   composition   on   rate   of polymerization contraction of light-curing resin composites. Acta Odontol Scand. 2002;60(3):146-50.Silva EH, Albuquerque RC, Lanza LD, Vieira GC, Peixoto RT, Alvim HH et al. Influence of different light sources on the conversion of composite resins. Indian J Dent Res. 2011;22(6):790-94.Souza E, Espíndola M, Diegoli NM, Kuroshima KN. Avaliação da alteração de cor de diferentes compósitos restauradores - influência de corantes usados na cavidade oral - estudo in vitro. RGO. 2006;54(1):43-6.Salvego RN, Dias RPB. Figueiredo JLG. Estabilidade de cor de resinas compostas no processo de manchamento e clareamento, Rev Dental Press Estét. 2013;10(3):54-62.Firoozmandi LM, Balducci I, Araújo MAM.  Influência da Fotopolimerização e da Cor da Resina Composta na Microdureza. Pesq Bras Odontoped Clín Integr. 2009;9(1):37-42.Anfe TEA, Agra CM, Vieira GF. Comparação de duas técnicas de fotoativação na sorção e solubilidade de resinas compostas em solução de etanol. J Biodent Biomater. 2011;1(1):61-7.Villalta P, Lu H, Okte Z, Garcia-Godoy F, Powers JM. Effects of staining and bleaching on color change of dental composite resins. J Prosthet Dent. 2006;95(2):137-42.Barghi N, Berry T, Hatton C. Evaluation intensity output of curing lights in private dental offices. J. am. dent. assoc. 1994;125(7):992-96.Santini A, Miletic V, Swift MD, Bradley M. Degree of conversion and microhardness of TPO-containing resin-based composites cured by polywave and monowave LED units. J Dent. 2012;40(7):577-84.


2006 ◽  
Vol 20 (4) ◽  
pp. 342-346 ◽  
Author(s):  
Daniela Francisca Gigo Cefaly ◽  
Linda Wang ◽  
Liliam Lucia Carrara Paes de Mello ◽  
Janaína Lima dos Santos ◽  
Jean Rodrigo dos Santos ◽  
...  

The Light Emitting Diodes (LED) technology has been used to photoactivate composite resins and there is a great number of published studies in this area. However, there are no studies regarding resin-modified glass-ionomer cements (RMGIC), which also need photoactivation. Therefore, the aim of this study was to evaluate water sorption of two RMGIC photoactivated with LED and to compare this property to that obtained with a halogen light curing unit. A resin composite was used as control. Five specimens of 15.0 mm in diameter x 1.0 mm in height were prepared for each combination of material (Fuji II LC Improved, Vitremer, and Filtek Z250) and curing unit (Radii and Optilight Plus) and transferred to desiccators until a constant mass was obtained. Then the specimens were immersed into deionized water for 7 days, weighed and reconditioned to a constant mass in desiccators. Water sorption was calculated based on weight and volume of specimens. The data were analyzed by two-way ANOVA and Tukey test (p < 0.05). Specimens photocured with LED presented significantly more water sorption than those photocured with halogen light. The RMGIC absorbed statistically significant more water than the resin composite. The type of light curing unit affected water sorption characteristics of the RMGIC.


2006 ◽  
Vol 17 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Janisse Martinelli ◽  
Fernanda de Carvalho Panzeri Pires-de-Souza ◽  
Luciana Assirati Casemiro ◽  
Camila Tirapelli ◽  
Heitor Panzer

This study compared the abrasion resistance of direct composite resins cured by light-emitting diodes (LED) and halogen light-curing units. Twenty specimens (12 mm in diameter; 1.0 mm thick) of each composite resin [TPH (Dentsply); Definite (Degussa); Charisma (Heraus Kulzer)] were prepared using a polytetrafluoroethylene matrix. Ten specimens per material were cured with the LED source and 10 with the halogen lamp for 40 s. The resin discs were polished, submitted to initial surface roughness reading (Ra initial - mum) in a roughness tester and stored in water at 37°C for 15 days. The specimens were weighed (M1) and submitted to simulated toothbrushing using slurry of water and dentifrice with high abrasiveness. After 100 minutes in the toothbrushing simulator, the specimens were cleaned, submitted to a new surface roughness reading (Ra final - mum) and reweighed (M2). Mass loss was determined as the difference between M1 and M2. Data were recorded and analyzed statistically by one-way ANOVA and Tukey Test at 5% significance level. The composite resin with greater size of inorganic fillers (TPH) showed the lowest mass loss and surface roughness means, indicating a higher resistance to toothbrush abrasion (p<0.05). Definite cured with LED presented the least resistance to toothbrush abrasion, showing the highest means of surface roughness and mass loss (p<0.05). The LED source did not show the same effectiveness as the halogen lamp for polymerizing this specific composite resin. When the composite resins were cured a halogen LCU, no statistically significant difference was observed among the materials (p>0.05). It may be concluded that the type of light-curing unit and the resin composition seemed to interfere with the materials' resistance to abrasion.


2013 ◽  
Vol 07 (03) ◽  
pp. 327-335 ◽  
Author(s):  
Camila Sabatini

ABSTRACT Objective: The aim of this study was to evaluate the effect of polymerization with quartz-tungsten-halogen (QTH) and light-emitting diodes (LED) on the surface microhardness of eight commercially available light-polymerized, methacrylate-based composite resins, with different filler particle composition (microfill, minifill, nanohybrids, and microhybrids) immediately after polymerization, after 24 hours, and after three months of storage. Materials and Methods: Eighty disk-shaped specimens were prepared using a split Teflon mold (6 × 2 mm) and were irradiated with either the QTH (Elipar 2500; 600 mW/cm 2 ) for 20 seconds or an LED (Bluephase G2; 1,200 mW/cm 2 ) for 40 seconds. The microhardness values were recorded using a Vickers hardness tester at a 300 g load for 15 seconds, immediately after polymerization, after 24 hours, and after three months of dark aging in distilled water at 37°C. Statistical analysis was performed using a two-way analysis of variance (ANOVA) and the Tukey′s test. Results: The baseline values demonstrated a significant effect of the composite and the interaction composite-LCU on the microhardness (P < 0.05). At 24 hours, only the composite variable showed a significant effect on the hardness values (P < 0.05). After three months, the composite, LCU, and the interaction composite-LCU all demonstrated a significant effect on the microhardness (P < 0.05). Conclusions: The effectiveness of polymerization, measured in terms of surface hardness, was shown to be dependent not only on the type of light curing unit, but also on the type of composite. Moreover, the choice of composite was shown to affect the performance of the light curing unit.


Background: Setting of conventional glass ionomers cement and dental resin composites as filling materials is predominantly through polymerization reaction, which is usually induced by light. The objective of this study was to assess the temperature changes, light intensities, sorption and solubility capability and comparative micro hardness in Dental Resin Composites (DRC) by using two different light curing units that is Quartz Tungsten Halogen (QTH) and Light Emitting Diodes (LED). Methods: This analytical, experimental, in-vitro study was spanned over one month, conducted in the laboratory of Dental Materials, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences. Through non-probability, convenient sampling, 60 samples of DRCs was prepared as 10mm in diameter and 2mm in thickness in the steel moulds by a single trained operator. Effect of heat generation, light intensities, sorption and solubility and micro hardness during polymerization of DRCs were all measured. Statistical analysis was done using SPSS with descriptive statistics and two sample independent t-tests. The p-value of <0.05 was considered significant at 95 % confidence level. Results: Mean surface micro hardness of DRC was found to be 15.48±0.46 and 18.26±0.53 when QTH and LED lamps were employed respectively. Whereas, mean light intensity of QTH and LED lamps were found to be 434 and 925mW/cm2. No significant difference in temperature change during polymerization reaction (p=0.128) and in sorption and solubility capability (p=0.001) of DRC was observed. Conclusion: Light-emitting diodes were evaluated to be more effective than Quartz Tungsten Halogen Light in achieving increased surface micro hardness of DRC. Keywords: Light; Glass Ionomer Cements; Tungsten; Hardness.


2008 ◽  
Vol 27 (4) ◽  
pp. 523-533 ◽  
Author(s):  
Chang-Jun BAEK ◽  
Seok-Hee HYUN ◽  
Sang-Kyu LEE ◽  
Hyo-Joung SEOL ◽  
Hyung-II KIM ◽  
...  

2014 ◽  
Vol 8 (1) ◽  
pp. 144-147 ◽  
Author(s):  
Seyed Mostafa Mousavinasab ◽  
Mehrdad Barekatain ◽  
Elahe Sadeghi ◽  
Farzaneh Nourbakhshian ◽  
Amin Davoudi

Introduction:Hardness is one of the basic properties of dental materials, specially composite resins which is relevant to their polymerization. The aim of this study was to evaluate the effect of light curing distance and the color of clear Mylar strips on surface hardness of Silorane-based (SCR) and Methacrylate-based composite resins (MCR).Materials and methods:40 samples of MCRs (Filtek Z250) and SCRs (Filtek P90) were prepared in size of 5 mm×2 mm (80 samples in total). The samples divided into 8 groups (10 samples in each one) based on the color of clear Mylar strips (white or blue) and distance from light curing source (0 mm or 2 mm). All the samples cured for 40 second and stored in incubator for 24 hours in 37°C temperature. Surface hardness test was done by Vickers test machine and the collected data were analyzed by one-way ANOVA and paired T-test by using SPSS software version 13 at significant level of 0.05.Results:MCRs cured with blue Mylar strips from 0 mm distance had the highest (114.5 kg/mm2) and SCRs cured with white Mylar strips from 2 mm distance had the lowest (42.2 kg/mm2) mean of surface hardness. Also, the results of comparison among SCRs and MCRs showed significant differences among all groups (all P values <0.01).Conclusion:The hardness decreased as the distance increased and the blue Mylar strips provided higher hardness than clear ones. Also, Filtek Z250 showed higher hardness compared to Filtek P90.


Sign in / Sign up

Export Citation Format

Share Document