Effect of Recrystallization on Low-Cycle Fatigue Behavior of DZ4 Directionally-Solidified Superalloy

2006 ◽  
Vol 306-308 ◽  
pp. 175-180 ◽  
Author(s):  
Hui Ji Shi ◽  
Hai Feng Zhang ◽  
Yan Qing Wu

Effect of recrystallization on DZ4 directionally-solidified nickel-base superalloy was investigated both at room temperature and high temperature of 673K. In-situ SEM surface observation were performed. Experimental results reveal that the material performance is strongly influenced by surface recrystallization layer. All specimens were prepared under conditions of shot peening and 4h 1220°C high temperature annealing. Different shot peening pressure specimens have different recrystallization states. High shot penning pressure specimens have clear and straight grain boundaries and the grain size appears to be a little bit larger. Recrystallization state seems not only affect the fatigue life, but also the crack initiation pattern and crack initiation life. Low shot peening pressure specimens have much lower fatigue life which is around 8-10% of virgin one, and SEM Real-time observation reveals that channeling cracks initiated at the early stage of fatigue life. High shot peening pressure specimens have higher fatigue life comparing to low shot peening pressure specimens, although it’s almost half lower than the virgin one, and cracks initiated not until middle or latter stage of fatigue life. Crack initiation life is also much longer than those of low shot peening pressure. Low shot peening pressure specimens seems not fully recrystallized, and its grain boundaries are much fragile which is responsible for high density microcracks initiation, and finally leads to the failure. Further nano-indention experiments on surface recrystallized layers show that higher shot peening recrystallized layers have much lower elastic module, which may explain the longer crack initiation life.

2012 ◽  
Vol 706-709 ◽  
pp. 2456-2461
Author(s):  
Xian Feng Ma ◽  
Hui Ji Shi

The effect of recrystallization on the low cycle fatigue life of DZ4 directionally solidified superalloy was investigated for specimens with three different recrystallized layers, which were generated by shot peening (0.1MPa, 0.3MPa and 0.5MPa respectively) and a subsequent annealing heat treatment. The fatigue life showed a decrease for recrystallized specimens with shot-peening of 0.1 MPa and 0.3 MPa, and an unusual increase for that of 0.5MPa, in comparison with the original DZ4 specimen. In-situ SEM observations were performed on the short crack growth behaviors for both original and recrystallized specimens, which revealed the fracture mechanism and the interaction with microstructure. Quantitative analysis of fatigue crack growth rates rationalized the influence of recrystallization on the low-cycle fatigue life of DZ4.


2008 ◽  
Vol 44-46 ◽  
pp. 43-50 ◽  
Author(s):  
Hui Ji Shi ◽  
Xian Feng Ma ◽  
Da Wei Jia ◽  
Hai Feng Zhang ◽  
Li Sha Niu

Specimens of a directionally solidified superalloy with different shot peening pressure were annealed at 1220oC in vacuum condition to get recrystallized surface layers with different micro-structures. Low cycle fatigue tests of these specimens were performed at room temperature and 400oC by using an electrohydraulic load frame in the SEM system for real-time observation. The initiation and propagation of cracks were inspected and the influence of the micro-structure of the recrystallized layer on the material fatigue behavior was analyzed. The low cycle fatigue life of the specimens depends mainly on the characteristics of the recrystallized layer. When the shot peening pressure is lower, the recrystallized layer is thin and not integrated, and the fatigue life decreases obviously in comparison with that of the specimen without recrystallized surface layer. When the shot peening pressure increases, the recrystal grains are more integrated, and the fatigue life rises. A comparison of the recrystallized layers between the blade surface and the specimen surface has been done and it points that the incompact surface recrystal layer is very dangerous to gas turbine blades.


Author(s):  
Masao Itatani ◽  
Keisuke Tanaka ◽  
Isao Ohkawa ◽  
Takehisa Yamada ◽  
Toshiyuki Saito

Fatigue tests of smooth and notched round bars of austenitic stainless steels SUS316NG and SUS316L were conducted under cyclic tension and cyclic torsion with and without static tension. Fatigue strength under fully reversed (R=−1) cyclic tension once increased with increasing stress concentration factor up to Kt=1.5, but it decreased from Kt=1.5 to 2.5. Fatigue life increased with increasing stress concentration under pure cyclic torsion, while it decreased with increasing stress concentration under cyclic torsion with static tension. From the measurement of fatigue crack initiation and propagation lives using electric potential drop method, it was found that the crack initiation life decreased with increasing stress concentration and the crack propagation life increased with increasing stress concentration under pure cyclic torsion. Under cyclic torsion with static tension, the crack initiation life also decreased with increasing stress concentration but the crack propagation life decreased or not changed with increasing stress concentration then the total fatigue life of sharper notched specimen decreased. It was also found that the fatigue life of smooth specimen under cyclic torsion with static tension was longer than that under pure cyclic torsion. This behavior could be explained based on the cyclic strain hardening under non-proportional loading and the difference in crack path with and without static tension.


1968 ◽  
Vol 90 (4) ◽  
pp. 620-626 ◽  
Author(s):  
A. G. Pickett

A modification of the notch stress procedure for fatigue-life analysis is presented. The importance of considering the mechanics of the specimen and the effects of the notch on specimen mechanics is illustrated by example. The procedure is applied to correlate the results of small specimen tests with large weld defect specimen tests. The significance of crack-initiation life and crack-propagation life and the dependence of these portions of total fatigue life on specimen geometry and loading is developed.


2006 ◽  
Vol 324-325 ◽  
pp. 959-962
Author(s):  
Yao Chun Zhang ◽  
Wei An Lian ◽  
Wen Yuan Zhang

The low cycle fatigue behavior and energy dissipation capacity around the weak axis of the welded I-section bracing members are investigated by 35 pinned-pinned bracing specimen tests under the axial cyclic loading with different characteristics. Particular attention is paid to the effects of loading amplitude, loading history and geometry properties of these members. It is found that the fatigue damage propagating to fracture in the flanges of the bracing members can be divided into 3 stages involving the macroscopic surface crack initiation, the penetrated crack formation and the penetrated crack propagation. Some empirical formulas to estimate the fatigue life and cyclic energy dissipation capacity of the bracing members are also presented based on the experimental data. The statistical analysis indicates that the fatigue life to surface crack initiation significantly depends on the inelastic local buckling and will increase with decreasing width-thickness ratio of the flanges and increasing slenderness ratios of the bracing members. Besides, it is found that the low cycle fatigue and energy dissipation of these members also depends on loading amplitude and loading history, and the effects of overloads and mean compression amplitude can improve the fatigue performance of bracing members. The test results show that the bracing members with better low-cycle fatigue resistance have the better energy dissipation capacities.


2017 ◽  
Vol 1142 ◽  
pp. 23-30 ◽  
Author(s):  
Jin Hui Du ◽  
Xu Dong Lu ◽  
Qun Deng

IN718 alloy possesses excellent mechanical properties at high temperatures, good process ability, therefore, it has been widely used in aero engine turbine disks, compressor disks, and power turbine shafts (i.e., rotating components). The fatigue properties of the alloy are a key factor that determines the safety and reliability of the engine. In this paper, the fatigue properties of IN718 alloy are investigated under low-and middle-frequency conditions at 600 °C and 455 °C, the initiation of fatigue cracks, and the relation between fatigue life and grain size are discussed. The results show that the carbides response as a crack initiation site at low-frequency fatigue condition (1 Hz), and string-type or heap-type carbides distribution promotes crack propagation and shortens fatigue life, the twin boundaries in large grains are act as a crack initiation site at middle-frequency fatigue condition (10 Hz). The grain size is smaller, and the low cycle fatigue properties of the alloy are better.


Sign in / Sign up

Export Citation Format

Share Document