The Analysis on the Low Cycle Fatigue Behavior of a Directionally Solidified Superalloy with Recrystallized Surface Layers

2008 ◽  
Vol 44-46 ◽  
pp. 43-50 ◽  
Author(s):  
Hui Ji Shi ◽  
Xian Feng Ma ◽  
Da Wei Jia ◽  
Hai Feng Zhang ◽  
Li Sha Niu

Specimens of a directionally solidified superalloy with different shot peening pressure were annealed at 1220oC in vacuum condition to get recrystallized surface layers with different micro-structures. Low cycle fatigue tests of these specimens were performed at room temperature and 400oC by using an electrohydraulic load frame in the SEM system for real-time observation. The initiation and propagation of cracks were inspected and the influence of the micro-structure of the recrystallized layer on the material fatigue behavior was analyzed. The low cycle fatigue life of the specimens depends mainly on the characteristics of the recrystallized layer. When the shot peening pressure is lower, the recrystallized layer is thin and not integrated, and the fatigue life decreases obviously in comparison with that of the specimen without recrystallized surface layer. When the shot peening pressure increases, the recrystal grains are more integrated, and the fatigue life rises. A comparison of the recrystallized layers between the blade surface and the specimen surface has been done and it points that the incompact surface recrystal layer is very dangerous to gas turbine blades.

2012 ◽  
Vol 706-709 ◽  
pp. 2456-2461
Author(s):  
Xian Feng Ma ◽  
Hui Ji Shi

The effect of recrystallization on the low cycle fatigue life of DZ4 directionally solidified superalloy was investigated for specimens with three different recrystallized layers, which were generated by shot peening (0.1MPa, 0.3MPa and 0.5MPa respectively) and a subsequent annealing heat treatment. The fatigue life showed a decrease for recrystallized specimens with shot-peening of 0.1 MPa and 0.3 MPa, and an unusual increase for that of 0.5MPa, in comparison with the original DZ4 specimen. In-situ SEM observations were performed on the short crack growth behaviors for both original and recrystallized specimens, which revealed the fracture mechanism and the interaction with microstructure. Quantitative analysis of fatigue crack growth rates rationalized the influence of recrystallization on the low-cycle fatigue life of DZ4.


2016 ◽  
Vol 713 ◽  
pp. 30-33 ◽  
Author(s):  
Marcelo A.S. Torres ◽  
D.T. Harada ◽  
Carlos Antonio Reis Pereira Baptista ◽  
Maria P. Cindra Fonseca

Shot peening is a method widely used to improve the fatigue strength of materials, through the creation of a compressive residual stress field (CRSF) in their surface layers. In the present research the gain in fatigue life of AISI 4340 steel, obtained by shot peening treatment, is evaluated under the three different hardnesses used in landing gear. Rotating bending fatigue tests and alternating tension tests were conducted and the CRSF was measured by x-ray tensometry prior and after interrupted fatigue tests. The evaluation of fatigue life after shot peening in relation to the relaxation of CRSF, of the crack initiation sites and surface roughness is done.


2011 ◽  
Vol 275 ◽  
pp. 59-62
Author(s):  
Jae Hoon Kim ◽  
Kwon Tae Hwang ◽  
Keun Bong Yoo ◽  
Han Sang Lee

High strength nickel-base super alloys have been used in turbine blades for many years because of their superior performance at high temperature. The prediction of fatigue life for superalloys is important for improving the efficiency. In this study, low cycle fatigue tests are performed the variables of total strain range, and room and elevated temperature. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of IN738LC super alloy. The fatigue life is evaluated by the Coffin-Manson equation, also the predicted lives by plastic and total strain energy density are compared with experimental results.


2006 ◽  
Vol 306-308 ◽  
pp. 175-180 ◽  
Author(s):  
Hui Ji Shi ◽  
Hai Feng Zhang ◽  
Yan Qing Wu

Effect of recrystallization on DZ4 directionally-solidified nickel-base superalloy was investigated both at room temperature and high temperature of 673K. In-situ SEM surface observation were performed. Experimental results reveal that the material performance is strongly influenced by surface recrystallization layer. All specimens were prepared under conditions of shot peening and 4h 1220°C high temperature annealing. Different shot peening pressure specimens have different recrystallization states. High shot penning pressure specimens have clear and straight grain boundaries and the grain size appears to be a little bit larger. Recrystallization state seems not only affect the fatigue life, but also the crack initiation pattern and crack initiation life. Low shot peening pressure specimens have much lower fatigue life which is around 8-10% of virgin one, and SEM Real-time observation reveals that channeling cracks initiated at the early stage of fatigue life. High shot peening pressure specimens have higher fatigue life comparing to low shot peening pressure specimens, although it’s almost half lower than the virgin one, and cracks initiated not until middle or latter stage of fatigue life. Crack initiation life is also much longer than those of low shot peening pressure. Low shot peening pressure specimens seems not fully recrystallized, and its grain boundaries are much fragile which is responsible for high density microcracks initiation, and finally leads to the failure. Further nano-indention experiments on surface recrystallized layers show that higher shot peening recrystallized layers have much lower elastic module, which may explain the longer crack initiation life.


Author(s):  
Xiaojun Yan ◽  
Jingxu Nie

A new experimental method, in which a full scale directionally solidified (DS) alloy turbine blade is loaded by a special design rig employing friction force and heated by eddy current induction, is proposed to conduct creep-fatigue life tests in this investigation. The method can take factors such as geometry, volume, especially cast procedures, etc., into creep-fatigue life assessment. Principle and design of the test rig are fully explained. Creep-fatigue tests of turbine blades made of DZ4 alloy (one type of DS alloys) were conducted and test data were analyzed. Life prediction based on test data of this investigation shows good agreement with actual flight experience of these blades. The method of this article provides a new way to estimate the potential creep-fatigue or low cycle fatigue life for turbine blades.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4070
Author(s):  
Andrea Karen Persons ◽  
John E. Ball ◽  
Charles Freeman ◽  
David M. Macias ◽  
Chartrisa LaShan Simpson ◽  
...  

Standards for the fatigue testing of wearable sensing technologies are lacking. The majority of published fatigue tests for wearable sensors are performed on proof-of-concept stretch sensors fabricated from a variety of materials. Due to their flexibility and stretchability, polymers are often used in the fabrication of wearable sensors. Other materials, including textiles, carbon nanotubes, graphene, and conductive metals or inks, may be used in conjunction with polymers to fabricate wearable sensors. Depending on the combination of the materials used, the fatigue behaviors of wearable sensors can vary. Additionally, fatigue testing methodologies for the sensors also vary, with most tests focusing only on the low-cycle fatigue (LCF) regime, and few sensors are cycled until failure or runout are achieved. Fatigue life predictions of wearable sensors are also lacking. These issues make direct comparisons of wearable sensors difficult. To facilitate direct comparisons of wearable sensors and to move proof-of-concept sensors from “bench to bedside,” fatigue testing standards should be established. Further, both high-cycle fatigue (HCF) and failure data are needed to determine the appropriateness in the use, modification, development, and validation of fatigue life prediction models and to further the understanding of how cracks initiate and propagate in wearable sensing technologies.


2012 ◽  
Vol 06 ◽  
pp. 251-256
Author(s):  
HO-YOUNG YANG ◽  
JAE-HOON KIM ◽  
KEUN-BONG YOO

Co -base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.


PCI Journal ◽  
2022 ◽  
Vol 67 (1) ◽  
Author(s):  
Jörn Remitz ◽  
Martin Empelmann

Pretensioned concrete beams are widely used as bridge girders for simply supported bridges. Understanding the fatigue behavior of such beams is very important for design and construction to prevent fatigue failure. The fatigue behavior of pretensioned concrete beams is mainly influenced by the fatigue of the prestressing strands. The evaluation of previous test results from the literature indicated a reduced fatigue life in the long-life region compared with current design methods and specifications. Therefore, nine additional high-cycle fatigue tests were conducted on pretensioned concrete beams with strand stress ranges of about 100 MPa (14.5 ksi). The test results confirmed that current design methods and specifications overestimate the fatigue life of embedded strands in pretensioned concrete beams.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6741
Author(s):  
Grzegorz Junak ◽  
Anżelina Marek ◽  
Michał Paduchowicz

This paper presents the results of tests conducted on the HR6W (23Cr-45Ni-6W-Nb-Ti-B) alloy under low-cycle fatigue at room temperature and at 650 °C. Fatigue tests were carried out at constant values of the total strain ranges. The alloy under low-cycle fatigue showed cyclic strengthening both at room temperature and at 650 °C. The degree of HR6W strengthening described by coefficient n’ was higher at higher temperatures. At the same time, its fatigue life Nf at room temperature was, depending on the range of total strain adopted in the tests, several times higher than observed at 650 °C.


Sign in / Sign up

Export Citation Format

Share Document