Analysis of Residual Stress Components Developed in Cold Drawing by Finite Element Method

2006 ◽  
Vol 321-323 ◽  
pp. 24-27 ◽  
Author(s):  
Tae Hyun Baek

Predicting the behavior of steel during deformation process under service conditions is one of the main challenges in cold drawing. In this paper, finite element method was used to analyze the distribution of residual stress components in a rod with respect to different area reductions in cold drawing process. Cold drawing brought sunken-in deformation at the bottom land of the rod that was in accord with the result obtained from the analysis using ABAQUS. The results obtained from finite element analysis were in close agreement with the determined high-accuracy measurements.

2013 ◽  
Vol 328 ◽  
pp. 990-994
Author(s):  
Chun Ho Yin ◽  
Chao Ming Hsu ◽  
Ping Shen Su ◽  
Jao Hwa Kuang

This study investigates the effectiveness of the hole-drilling strain gage method on residual stress estimation. The thermal elastic-plastic model of the commercial Marc finite element method package is used to simulate and build up the hole-drilling process and residual stress distribution. Two Inconel 690 alloy plate welded with GTAW filler I-52 solder are first simulated using the Marc software. The traditional hole-drilling process is then simulated. The simulated residual strain variation data is incorporated into the hole-drilling strain-gage method to derive the possible residual stress components. The effects of drilling depth and drill size on the accuracy of residual stress estimates are also discussed. A comparison of stress components estimated from the traditional hole-drilling strain gage method and simulated from the Marc software is presented. The modified dimensionless parameters are provided by applying the optimum technique. The numerical results indicate that the proposed dimensionless parameters can significantly improve the accuracy of estimated residual stress components.


The non-uniform thermal expansion and contraction resulting from welding processes cause residual stresses and strains. Experimental studies on measuring welding residual stresses and strains of structure are costly and sometimes they are not possible. Previously, analytical methods with idealized models were developed to determine the welding residual stresses and strain. Recently, numerical methods are constructed to analyze the stresses and the strains in welded structures. This paper presents the calculation results of residual stress and welding strain in butt welded joint of S355J2G3 carbon steel of 5 mm thickness made by MAG welding process with a single pass. The calculation is performed by two methods: the imaginary force method and the finite element method. In the finite element method, the SYSWELD software is used to simulate and to determine residual stresses and strain of this welded joint. The results of finite element method are compared with those of imaginary force method to show the rationality and the advantages of finite element method. The study results have shown that in this welded joint, only the longitudinal and transverse stress components are important and the other stress components are negligible.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1388
Author(s):  
Daniele Oboe ◽  
Luca Colombo ◽  
Claudio Sbarufatti ◽  
Marco Giglio

The inverse Finite Element Method (iFEM) is receiving more attention for shape sensing due to its independence from the material properties and the external load. However, a proper definition of the model geometry with its boundary conditions is required, together with the acquisition of the structure’s strain field with optimized sensor networks. The iFEM model definition is not trivial in the case of complex structures, in particular, if sensors are not applied on the whole structure allowing just a partial definition of the input strain field. To overcome this issue, this research proposes a simplified iFEM model in which the geometrical complexity is reduced and boundary conditions are tuned with the superimposition of the effects to behave as the real structure. The procedure is assessed for a complex aeronautical structure, where the reference displacement field is first computed in a numerical framework with input strains coming from a direct finite element analysis, confirming the effectiveness of the iFEM based on a simplified geometry. Finally, the model is fed with experimentally acquired strain measurements and the performance of the method is assessed in presence of a high level of uncertainty.


2015 ◽  
Vol 9 (1) ◽  
pp. 23-26 ◽  
Author(s):  
Dmytro Fedorynenko ◽  
Sergiy Boyko ◽  
Serhii Sapon

Abstract The analysis of spatial functions of pressure considering the geometrical deviations and the elastic deformation of conjugate surace have been considered. The analysis of spatial functions of pressure is performed by the finite element method. The difference of the size of pressure in a tangential direction of a pocket of a support under various service conditions has been investigated. A recommendation for improving of operational characteristics in regulated hydrostatic radial bearing has been developed.


Sign in / Sign up

Export Citation Format

Share Document