Flexible Force Sensors Using Fiber Bragg Grating

2006 ◽  
Vol 326-328 ◽  
pp. 1343-1346
Author(s):  
Jin Seok Heo ◽  
Jong Ha Cheung ◽  
Jung Ju Lee

In this paper, we present a newly designed flexible optical fiber force sensors which use fiber Bragg gratings and diaphragm and bridge type transducer, to detect a distributed normal force and which is the first step toward realizing a tactile sensor using optical fiber sensors (FBG). The transducer is designed such that it is not affected by chirping and light loss to enhance the performance of the sensors. We also present the design and fabrication process and experimental verification of the prototype sensors.

2013 ◽  
Vol 2 (2) ◽  
pp. 23-36
Author(s):  
J. P. Carmo ◽  
J. E. Ribeiro

This paper provides a revision with the state-of-the-art related to the use of optical fiber sensors on medical instrumentation. Two types of optical fiber sensors are the focus of review: conventional optical fibers for communications and fiber Bragg gratings (FBGs).


2013 ◽  
Vol 31 (3) ◽  
pp. 455-460 ◽  
Author(s):  
Chao Chen ◽  
Yong-Sen Yu ◽  
Rui Yang ◽  
Chuang Wang ◽  
Jing-Chun Guo ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1818
Author(s):  
Mattia Francesco Bado ◽  
Joan R. Casas

The present work is a comprehensive collection of recently published research articles on Structural Health Monitoring (SHM) campaigns performed by means of Distributed Optical Fiber Sensors (DOFS). The latter are cutting-edge strain, temperature and vibration monitoring tools with a large potential pool, namely their minimal intrusiveness, accuracy, ease of deployment and more. Its most state-of-the-art feature, though, is the ability to perform measurements with very small spatial resolutions (as small as 0.63 mm). This review article intends to introduce, inform and advise the readers on various DOFS deployment methodologies for the assessment of the residual ability of a structure to continue serving its intended purpose. By collecting in a single place these recent efforts, advancements and findings, the authors intend to contribute to the goal of collective growth towards an efficient SHM. The current work is structured in a manner that allows for the single consultation of any specific DOFS application field, i.e., laboratory experimentation, the built environment (bridges, buildings, roads, etc.), geotechnical constructions, tunnels, pipelines and wind turbines. Beforehand, a brief section was constructed around the recent progress on the study of the strain transfer mechanisms occurring in the multi-layered sensing system inherent to any DOFS deployment (different kinds of fiber claddings, coatings and bonding adhesives). Finally, a section is also dedicated to ideas and concepts for those novel DOFS applications which may very well represent the future of SHM.


2021 ◽  
Vol 24 (5) ◽  
pp. 50-55
Author(s):  
Chiara Perri ◽  
Francesco Arcadio ◽  
Girolamo D'Agostino ◽  
Nunzio Cennamo ◽  
Giovanni Porto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document