Analysis of Simultaneous Velocity and Density Distributions for High-Speed CO2 Flow Using Particle Image Velocimetry and Digital Speckle Tomography

2006 ◽  
Vol 326-328 ◽  
pp. 55-58 ◽  
Author(s):  
Han Seo Ko ◽  
Yong Jae Kim ◽  
Oh Chae Kwon ◽  
Koji Okamoto

Velocity and density distributions of a high-speed and initial CO2 jet flow have been analyzed simultaneously by a developed three-dimensional digital speckle tomography and a particle image velocimetry (PIV). Three high-speed cameras have been used for the tomography and the PIV since a shape of a nozzle for the jet flow is asymmetric and the initial flow is fast and unsteady. The speckle movements between no flow and CO2 jet flow have been obtained by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. The three-dimensional density fields for the high-speed CO2 jet flow have been reconstructed from the deflection angles by the real-time tomography method, and the two-dimensional velocity fields have been calculated by the PIV method simultaneously.

2012 ◽  
Vol 9 (77) ◽  
pp. 3378-3386 ◽  
Author(s):  
Richard J. Bomphrey ◽  
Per Henningsson ◽  
Dirk Michaelis ◽  
David Hollis

Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread.


Author(s):  
Masaki Hiratsuka ◽  
Shinichiro Ito ◽  
Keita Miyasaka ◽  
Akihisa Konno

A knuckle shot, resulting from non-spinning kicking, is an essential technique in soccer. The irregular flight path of the knuckle shot is caused by the aerodynamic force from the three-dimensional twin vortices generated in the wake behind the ball. However, the detailed behavior of the twin vortices and relation between the jet flow and the acting forces on the balls is still not understood. In addition, a more thorough understanding of the effect of ball panels on the formation of twin vortices and jet flow is important to develop balls with high controllability. To study the effect of the ball panel shape on the flight path, stereo three-dimensional particle image velocimetry wake flow measurements and synchronized force measurements were performed on various soccer balls. It was confirmed that the aerodynamic force on the ball is produced by the jet flow generated by the vortices in the wake flow. The directions of the force followed the changes of the jet flow, and the magnitude of the force was strongly associated with the flow rate of the jet. Moreover, the shape of the ball panels, especially the groove volume, determines the critical Reynolds number and the fluttering of the balls.


Author(s):  
Martin Wosnik ◽  
Qiao Qin ◽  
Damien T. Kawakami ◽  
Roger E. A. Arndt

A Large Eddy Simulation (LES) approach for cavitating flow, based on a virtual single-phase, fully compressible cavitation model which includes the effects of incondensable gas, has been shown to be capable of capturing the complex dynamical features of highly unsteady cavitating flows of two-dimensional hydrofoils. Here the LES results are compared to Time-Resolved Particle Image Velocimetry (TR-PIV) in the wake of a cavitating NACA 0015 hydrofoil, with particular attention to the predicted vortex shedding mechanisms. Despite some difficulty with obtaining vector fields from vortical clouds of vaporous-gaseous bubbles with cross-correlation techniques, the initial results seem promising in that they confirm the existence of a primary vortex pair (type A-B). In addition to TR-PIV, the cavitation cloud shedding was also documented with phase-locked, time-resolved photography and high speed volume-illuminated video, both with simultaneous imaging of side and plan views of the foil. All three experimental techniques confirm the need for fully three-dimensional simulations to properly describe the unsteady, three-dimensional cavitation cloud shedding mechanism.


2018 ◽  
Vol 15 (148) ◽  
pp. 20180441 ◽  
Author(s):  
Per Henningsson ◽  
Lasse Jakobsen ◽  
Anders Hedenström

In this study, we explicitly examine the aerodynamics of manoeuvring flight in animals. We studied brown long-eared bats flying in a wind tunnel while performing basic sideways manoeuvres. We used particle image velocimetry in combination with high-speed filming to link aerodynamics and kinematics to understand the mechanistic basis of manoeuvres. We predicted that the bats would primarily use the downstroke to generate the asymmetries for the manoeuvre since it has been shown previously that the majority of forces are generated during this phase of the wingbeat. We found instead that the bats more often used the upstroke than they used the downstroke for this. We also found that the bats used both drag/thrust-based and lift-based asymmetries to perform the manoeuvre and that they even frequently switch between these within the course of a manoeuvre. We conclude that the bats used three main modes: lift asymmetries during downstroke, thrust/drag asymmetries during downstroke and thrust/drag asymmetries during upstroke. For future studies, we hypothesize that lift asymmetries are used for fast turns and thrust/drag for slow turns and that the choice between up- and downstroke depends on the timing of when the bat needs to generate asymmetries.


2012 ◽  
Vol 15 (3) ◽  
pp. 193-195 ◽  
Author(s):  
K. Hashimoto ◽  
A. Hori ◽  
T. Hara ◽  
S. Onogi ◽  
H. Mouri

Sign in / Sign up

Export Citation Format

Share Document