The Effects of Muscle Forces on Ankle Joint Kinetics during Postural Balance Control

2006 ◽  
Vol 326-328 ◽  
pp. 871-874
Author(s):  
Hyeon Ki Choi ◽  
Min Jwa Seo ◽  
Ja Choon Koo ◽  
Hyeon Chang Choi ◽  
Won Hak Cho

We assessed the effects of muscle forces on ankle joint kinetics during postural balance control of human boy. Nine male subjects (mean age of 25.8 yrs) participated in the experiment. An ankle joint model assumed ball and socket joint was used, which was capable of three dimensional rotations. A six-camera VICON system was used for motion analysis. Waist pulling system and force platform were adopted for forward sway and GRF (ground reaction force) measurement. We used linear optimization programs to calculate the variation of muscle forces and angular displacements of shank and foot segments. With the experimental data and linear programs, we could calculate joint reaction forces, and bone-on-bone forces. The results presented in this study give us the insights to understand the roles of lower limb muscles during postural balance control and ankle injury mechanism.

2010 ◽  
Vol 25 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Susanne Rein ◽  
Tobias Fabian ◽  
Hans Zwipp ◽  
Jan Heineck ◽  
Stephan Weindel

OBJECTIVE: The aim of this study was to examine the influence of extensive work-related use of the feet on functional ankle stability among musicians. METHODS: Thirty professional organists were compared to professional pianists and controls. All participants completed a questionnaire. Range of motion (ROM), peroneal reaction time, and positional sense tests of the ankle were measured. The postural balance control was investigated with the Biodex Stability System for the stable level 8 and unstable level 2. Statistical analysis was done with the Kruskal-Wallis test, Mann-Whitney test with Bonferroni-Holm correction, and Fisher’s exact test. RESULTS: Nine of 30 organists compared to 5 of 30 pianists and controls reported ankle sprains in their medical history. Pianists had a significant increased flexion of both ankle joints compared to organists (p≤0.01) and increased flexion of the right ankle joint compared to controls (p=0.02). The positional sense test and postural balance control showed no significant differences among groups. The peroneal reaction time of the right peroneus longus muscle was significantly increased in pianists compared to controls (p=0.008). CONCLUSIONS: Organists have shown a high incidence of ankle sprains. Despite their extensive work-related use of the ankle joints, organists have neither increased functional ankle stability nor increased ROM of their ankle joints in comparison to controls. Pianists have increased flexion of the ankle joint, perhaps due to the exclusive motion of extension and flexion while using the pedals. To minimize injuries of the ankle and improve functional ankle stability as well as balance control, proprioceptive exercises of the ankle in daily training programs are recommended.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Joseph E. Barton ◽  
Anindo Roy ◽  
John D. Sorkin ◽  
Mark W. Rogers ◽  
Richard Macko

We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task—with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities.


Author(s):  
Yang Rae Kim ◽  
Jae Ic Kim ◽  
Yong Youn Kim ◽  
Kwon Young Kang ◽  
Bo Kyoung Kim ◽  
...  

2005 ◽  
Vol 297-300 ◽  
pp. 2308-2313
Author(s):  
Min Jwa Seo ◽  
Hyeon Ki Choi

The purpose of this study was to calculate three dimensional angular displacements, moments and joint reaction forces (JRF) of the ankle joint during the waist pulling, and to assess the ankle JRF according to different perturbation modes and different levels of perturbation magnitude. Ankle joint model was assumed 3-D ball and socket joint which is capable of three rotational movements. We used 6 camera motion analysis system, force plate and waist pulling system. Two different waist pulling systems were adopted for forward sway with three magnitudes each. From motion data and ground reaction forces, we could calculate 3-D angular displacements, moments and JRF during the recovery of postural balance control. From the experiment using mass-falling perturbation, joint moments were larger than those from the experiment with milder perturbation using air cylinder pulling system. However, joint reaction forces were similar nevertheless the difference in joint moment. From the results, we could conjecture that the human body employs different strategies to protect joints by decreasing joint reaction forces, like using the joint movements or compensating JRF by distributing the forces on surrounding soft tissues. The results of this study provide us important insights for understanding the relationship between balance control and ankle injury mechanism.


2018 ◽  
Vol 27 (3) ◽  
pp. 237-243 ◽  
Author(s):  
Thomas W. Kernozek ◽  
Naghmeh Gheidi ◽  
Matthew Zellmer ◽  
Jordan Hove ◽  
Becky L. Heinert ◽  
...  

Context:Squatting is a common rehabilitation training exercise for patellofemoral pain syndrome (PFPS). Patellofemoral joint stress (PFJS) during squatting with more anterior knee displacement has not been systematically investigated.Objective:To compare PFJS during squatting using 2 techniques: squat while keeping the knees behind the toes (SBT) and squat while allowing the knees to go past the toes (SPT).Setting:University research laboratory.Participants:Twenty-five healthy females (age: 22.69 (0.74) y; height: 169.39 (6.44) cm; mass: 61.55 (9.74) kg) participated.Main Outcome Measures:Three-dimensional kinematic and kinetic data were collected at 180 and 1800 Hz, respectively. A musculoskeletal model was used to calculate muscle forces through static optimization. These muscle forces were used in a patellofemoral joint model to estimate PFJS.Results:The magnitudes of PFJS, reaction force, and quadriceps force were higher (P < .001) during SPT compared with the SBT technique. Knee flexion, hip flexion, and ankle dorsiflexion angles were reduced when using the SBT technique.Conclusions:Findings provide some general support for minimizing forward knee translation during squats for patients that may have patellofemoral pain syndrome.


2014 ◽  
Vol 281 (1797) ◽  
pp. 20141405 ◽  
Author(s):  
Emanuel Andrada ◽  
Christian Rode ◽  
Yefta Sutedja ◽  
John A. Nyakatura ◽  
Reinhard Blickhan

In contrast to the upright trunk in humans, trunk orientation in most birds is almost horizontal (pronograde). It is conceivable that the orientation of the heavy trunk strongly influences the dynamics of bipedal terrestrial locomotion. Here, we analyse for the first time the effects of a pronograde trunk orientation on leg function and stability during bipedal locomotion. For this, we first inferred the leg function and trunk control strategy applied by a generalized small bird during terrestrial locomotion by analysing synchronously recorded kinematic (three-dimensional X-ray videography) and kinetic (three-dimensional force measurement) quail locomotion data. Then, by simulating quail gaits using a simplistic bioinspired numerical model which made use of parameters obtained in in vivo experiments with real quail, we show that the observed asymmetric leg function (left-skewed ground reaction force and longer leg at touchdown than at lift-off) is necessary for pronograde steady-state locomotion. In addition, steady-state locomotion becomes stable for specific morphological parameters. For quail-like parameters, the most common stable solution is grounded running, a gait preferred by quail and most of the other small birds. We hypothesize that stability of bipedal locomotion is a functional demand that, depending on trunk orientation and centre of mass location, constrains basic hind limb morphology and function, such as leg length, leg stiffness and leg damping.


2013 ◽  
Vol 41 (1) ◽  
pp. 60-79 ◽  
Author(s):  
Wei Yintao ◽  
Luo Yiwen ◽  
Miao Yiming ◽  
Chai Delong ◽  
Feng Xijin

ABSTRACT: This article focuses on steel cord deformation and force investigation within heavy-duty radial tires. Typical bending deformation and tension force distributions of steel reinforcement within a truck bus radial (TBR) tire have been obtained, and they provide useful input for the local scale modeling of the steel cord. The three-dimensional carpet plots of the cord force distribution within a TBR tire are presented. The carcass-bending curvature is derived from the deformation of the carcass center line. A high-efficiency modeling approach for layered multistrand cord structures has been developed that uses cord design variables such as lay angle, lay length, and radius of the strand center line as input. Several types of steel cord have been modeled using the developed method as an example. The pure tension for two cords and the combined tension bending under various loading conditions relevant to tire deformation have been simulated by a finite element analysis (FEA). Good agreement has been found between experimental and FEA-determined tension force-displacement curves, and the characteristic structural and plastic deformation phases have been revealed by the FE simulation. Furthermore, some interesting local stress and deformation patterns under combined tension and bending are found that have not been previously reported. In addition, an experimental cord force measurement approach is included in this article.


Sign in / Sign up

Export Citation Format

Share Document