Effect of a Single Period of Mechanical Strain on Gene Expression Patterns of Ets1 and Cbfa1 in Murine Calvarial Sutural Osteoblast-Like Cells

2007 ◽  
Vol 330-332 ◽  
pp. 1105-1108
Author(s):  
Qi Feng Zhang ◽  
Shu Juan Zou ◽  
Meng Chun Qi ◽  
Yang Xi Chen ◽  
Zhi He Zhao

Cranial sutures produce new bone at the sutural edges of the bone fronts in response to external stimuli. Little is known regarding the mechanism of osteogenesis in cranial sutures. Ets1 and Cbfa1 are two important osteogenic transcription factors regulating the differentiation and maturation of osteoblasts. But their function in cranial sutures is not still elucidated. We have investigated the gene expression of Ets1 and Cbfa1 in rat’s calvarial sutural osteoblast-like cells under a single period of mechanical strain. The cells were isolated from the cranial suture of SD rats and cultured in vitro, and subjected to a single 40 minutes mechanical strain using a four-point bending apparatus. The gene expression patterns of Ets1 and Cbfa1 were examined by RT-PCR. Both mRNA levels of Ets1 and Cbfa1 have increased significantly within 6 and 12 hours respectively after mechanical strain were applied, and the increase returned to control level thereafter. However, Ets1 and Cbfa1 exhibited different temporal expression patterns: Ets1 expressed immediately after the mechanical loading and reached the maximum transcription at 0.5h; whereas Cbfa1 experienced a latency period first, then increased slowly within 2 hours, and reached the maximum transcription at 6 h. The maximum transcription of Cbfa1 was about 2.58 fold of that of Ets1. Ets1and Cbfa1 may play different roles in regulating bone matrix protein expressions in osteoblast-like cells during suture distraction and their function is time-dependent. High frequency distraction (>2times/24h) is favourable to the maximal expression of the two genes.

2013 ◽  
Vol 25 (1) ◽  
pp. 187
Author(s):  
M. J. Sudano ◽  
E. S. Caixeta ◽  
D. M. Paschoal ◽  
T. S. Rascado ◽  
L. F. Crocomo ◽  
...  

Over the past decades, there have been great advances in in vitro production (IVP) systems with improved culture methods and new knowledge regarding embryo genetics, physiology, ultrastructure, and morphology. Nevertheless, a major obstacle for dissemination of this technology is the great sensitivity of IVP embryos to cryopreservation. The objective was to study the global gene-expression patterns of fresh and vitrified IVP bovine embryos. Oocytes (N = 1290) were matured and fertilized in vitro (Day 0). Presumptive zygotes were cultured in SOFaa with 0.5% BSA and 2.5% of FCS. Cleavage and blastocyst production was evaluated after 3 and 7 days under standard culture conditions (at 38.5°C in atmosphere of 5% O2, 5% CO2, and 90% N2). On Day 7, half of the blastocysts were vitrified (n = 94), warmed (Sudano et al. 2011 Theriogenology 75, 1211–1220), and returned for 24 h of additional culture (re-expansion and hatching; hatched was evaluated 12 and 24 h after warming, respectively) when their RNA was extracted (vitrified group). The remaining embryos returned to culture until Day 8 when their RNA was extracted (fresh group). Total RNA extraction of a single blastocyst was performed using the PicoPure Kit (Applied Biosystems®, Foster City, CA, USA). The RNA samples were DNAse treated (Qiagen®, Valencia, CA, USA), and mRNA was amplified (RiboAmp Kit®). The aRNA output was evaluated with a NanoDrop (Thermo®, Wilmington, DE, USA) and Bioanalyzer (Agilent®, Santa Clara, CA, USA). Biotin-labelled and fragmented cRNA were obtained with the 3′IVT Kit (Affymetrix®, Santa Clara, CA, USA) to perform hybridization (N = 6–7, respectively, for vitrified and fresh groups) using the GeneChip Bovine Array (Affymetrix®). Microarray data analysis was performed with the FlexArray 1.6.1.1. Genes with a fold change of at least 2 and a probability of P ≤ 0.05 were considered differentially expressed. Real-time PCR was used to validate microarray results (N = 11–15, respectively, for vitrified and fresh groups). As a control, a pool of 200 blastocysts was submitted or not to mRNA amplification followed by the reverse transcription and qPCR of 17 genes. For statistical analyses, PROC GLIMMIX, PROC LOGISTIC, and PROC CORR were used. Cleavage and blastocyst production rates were 86.8 ± 1.0 and 32.5 ± 1.9%, respectively. Re-expansion and hatching/hatched rates were 69.3 and 19.3%, respectively. Messenger RNA abundance of amplified and nonamplified RNA had a high correlation (r = 0.89, P < 0.01). The microarray analysis indicated 383 differentially expressed genes (P ≤ 0.05) between fresh and vitrified blastocysts. Genes involved in apoptosis (PRDX2), heat shock (HSPA5), maternal recognition of pregnancy (IFNT2 and PAG2), and cell differentiation and placenta formation (KRT18) were downregulated in vitrified embryos. According to qPCR analysis, mRNA abundance of IFNT2, PRDX2, and KRT18 was downregulated, whereas HSPA5 mRNA levels were upregulated in vitrified blastocysts. Messenger RNA abundance of PAG2 was not different (P = 0.46) between fresh and vitrified embryos. In conclusion, vitrification alters the expression profile of the genes IFNT2, PRDX2, KRT18, and HSPA5 that can be related with embryo postcryopreservation survival capacity. FAPESP and LNBio-CNPEM are acknowledged.


Pneumologie ◽  
2018 ◽  
Vol 72 (S 01) ◽  
pp. S8-S9
Author(s):  
M Bauer ◽  
H Kirsten ◽  
E Grunow ◽  
P Ahnert ◽  
M Kiehntopf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document