Preparation and Characterization of Porous β-TCP/PLLA Composites with High β-TCP Content

2007 ◽  
Vol 330-332 ◽  
pp. 491-494 ◽  
Author(s):  
Hui Bin Liu ◽  
Yan Bo Gao ◽  
Shun Dong Miao ◽  
Wen Jian Weng ◽  
Kui Cheng ◽  
...  

Porous β-tricalcium phosphate (β-TCP)/ Poly L-lactic acid (PLLA) composites were prepared by thermally induced phase separation method. The results showed that the composite had an interconnected pore structure with ~200μm macropores. The inorganic particle content in the composites varied from 50% to 80% and these particles were homogeneously dispersed in PLLA matrix. The composites obtained in this study could act as a promising scaffold for bone tissue engineering because of the pore structure and the mechanical properties.

Author(s):  
Yi Zhang ◽  
Richard T. Tran ◽  
Dipendra Gyawali ◽  
Jian Yang

Finding an ideal biomaterial with the proper mechanical properties and biocompatibility has been of intense focus in the field of soft tissue engineering. This paper reports on the synthesis and characterization of a novel crosslinked urethane-doped polyester elastomer (CUPOMC), which was synthesized by reacting a previously developed photocrosslinkable poly (octamethylene maleate citrate) (POMC) prepolymers (pre-POMC) with 1,6-hexamethylene diisocyanate (HDI) followed by thermo- or photo-crosslinking polymerization. The mechanical properties of the CUPOMCs can be tuned by controlling the molar ratios of pre-POMC monomers, and the ratio between the prepolymer and HDI. CUPOMCs can be crosslinked into a 3D network through polycondensation or free radical polymerization reactions. The tensile strength and elongation at break of CUPOMC synthesized under the known conditions range from 0.73±0.12MPa to 10.91±0.64MPa and from 72.91±9.09% to 300.41±21.99% respectively. Preliminary biocompatibility tests demonstrated that CUPOMCs support cell adhesion and proliferation. Unlike the pre-polymers of other crosslinked elastomers, CUPOMC pre-polymers possess great processability demonstrated by scaffold fabrication via a thermally induced phase separation method. The dual crosslinking methods for CUPOMC pre-polymers should enhance the versatile processability of the CUPOMC used in various conditions. Development of CUPOMC should expand the choices of available biodegradable elastomers for various biomedical applications such as soft tissue engineering.


2014 ◽  
Vol 513-517 ◽  
pp. 143-146 ◽  
Author(s):  
Xue Jun Wang ◽  
Tao Lou ◽  
Jing Yang ◽  
Zhen Yang ◽  
Kun Peng He

In this study, a nanofibrous poly (L-lactic acid) (PLLA) scaffold reinforced by Hydroxyapatite (HAP) and β-tricalcium phosphate (β-TCP) was fabricated using the thermally induced phase separation method. The composite scaffold morphology showed a nanofibrous PLLA matrix and evenly distributed β-TCP/HAP particles. The composite scaffold had interconnective micropores and the pore size ranged 2-10 μm. Introducing β-TCP/HAP particles into PLLA matrix significantly improved the mechanical properties of the composite scaffold. In summary, the new composite scaffolds show a great deal promise for use in bone tissue engineering.


2014 ◽  
Vol 898 ◽  
pp. 322-325
Author(s):  
Xue Jun Wang ◽  
Tao Lou ◽  
Zhen Yang ◽  
Kun Peng He

Scaffold plays an important role in tissue engineering. In this study, porous PLGA scaffold was successfully prepared by mixed solvent systems using the thermally induced phase separation method. The PLGA scaffold shows fibrous matrix and interconnective pores, and the scaffold has high porosity and compressive modulus with dioxane/THF solvent system, which could be a very promising scaffold for tissue engineering.


2002 ◽  
Vol 735 ◽  
Author(s):  
Guobao Wei ◽  
Peter X. Ma

ABSTRACTTissue losses and organ failures resulting from injuries or diseases remain frequent and serious health problems despite great advances in medical technologies. Transplantation and reconstructive surgeries are seriously challenged by donor tissue shortage. We take a tissue engineering approach to design 3D scaffolds for cells to grow and synthesize new tissues. The scaffolds are biodegradable and will be absorbed after fulfilling the purpose as 3D templates, leaving nothing foreign in the body. To better mimic natural bone structurally, mechanically and biologically, nano-sized hydroxyapatite particles (N-HAP) were formulated with biodegradable poly(α-hydroxyl acids) to form composite scaffolds with well-controlled pore structures using thermally induced phase separation (TIPS) in this work. The pore structure and mechanical properties of the scaffolds were optimized by the use of multiple solvent systems, different quenching rates and quenching depths. The fabricated scaffolds possessed porosities higher than 90% and average pore sizes ranging from 50 to 500 μm. The scaffolds containing N-HAP maintained open and regular 3D pore structure similar to those of plain polymer scaffolds, implying that N-HAP particles were dispersed within the polymer pore walls of the scaffolds. The addition of N-HAP increased the compressive modulus by 20∼80% over that of plain polymer scaffolds. These results indicate that poly(α-hydroxyl acids)/N-HAP scaffolds may provide excellent 3D substrates for bone tissue engineering.


2016 ◽  
Vol 7 (14) ◽  
pp. 2553-2564 ◽  
Author(s):  
Yating Jia ◽  
Weizhong Wang ◽  
Xiaojun Zhou ◽  
Wei Nie ◽  
Liang Chen ◽  
...  

A poly(glycerol sebacate)-based elastomeric copolyesters with improved mechanical properties and higher water uptake capacity.


2019 ◽  
Vol 3 (3) ◽  
pp. 74 ◽  
Author(s):  
Ribas ◽  
Montanheiro ◽  
Montagna ◽  
Prado ◽  
Campos ◽  
...  

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a widely studied polymer and it has been found that porous PHBV materials are suitable for substrates for cell cultures. A crucial factor for scaffolds designed for tissue engineering is the water uptake. This property influences the transport of water and nutrients into the scaffold, which promotes cell growth. PHBV has significant hydrophobicity, which can harm the production of cells. Thus, the addition of α-wollastonite (WOL) can modify the PHBV scaffold’s water uptake. To our knowledge, a kinetics study of water uptake of α-wollastonite phase powder and the PHBV matrix has not been reported. In this work, PHBV and WOL, (PHBV/WOL) films were produced with 0, 5, 10, and 20 wt % of WOL. Films were characterized, and the best concentrations were chosen to produce PHBV/WOL scaffolds. The addition of WOL in concentrations up to 10 wt % increased the cell viability of the films. MTT analysis showed that PHBV/5%WOL and PHBV/10%WOL obtained cell viability of 80% and 98%, respectively. Therefore, scaffolds with 0, 5 and 10 wt % of WOL were fabricated by thermally induced phase separation (TIPS). Scaffolds were characterized with respect to morphology and water uptake in assay for 65 days. The scaffold with 10 wt % of WOL absorbed 44.1% more water than neat PHBV scaffold, and also presented a different kinetic mechanism when compared to other samples. Accordingly, PHBV/WOL scaffolds were shown to be potential candidates for biological applications.


Sign in / Sign up

Export Citation Format

Share Document