Forecasting of Surface Roughness and Cutting Force in Single Point Diamond Turning for KDP Crystal

2007 ◽  
Vol 339 ◽  
pp. 78-83 ◽  
Author(s):  
Jing He Wang ◽  
Shen Dong ◽  
H.X. Wang ◽  
Ming Jun Chen ◽  
Wen Jun Zong ◽  
...  

The method of single point diamond turning is used to machine KDP crystal. A regression analysis is adopted to construct a prediction model for surface roughness and cutting force, which realizes the purposes of pre-machining design, prediction and control of surface roughness and cutting force. The prediction model is utilized to analyze the influences of feed, cutting speed and depth of cut on the surface roughness and cutting force. And the optimal cutting parameters of KDP crystal on such condition are acquired by optimum design. The optimum estimated values of surface roughness and cutting force are 7.369nm and 0.15N, respectively .Using the optimal cutting parameters, the surface roughness Ra, 7.927nm, and cutting force, 0.19N, are obatained.

2020 ◽  
Vol 305 ◽  
pp. 117-121 ◽  
Author(s):  
Zvikomborero Hweju ◽  
Khaled Abou-El-Hossein

This paper is a presentation of a comparative study of the effect of water and kerosene coolants on surface finish during ultra-high precision diamond turning (UHPDT) of Rapidly Solidified Aluminium alloy (RSA 443). The percentage relative difference between the coolants’ surface roughness values is denoted by the ΔRa parameter. The accuracy of the Response Surface Method (RSM) in predicting surface roughness of water and kerosene-based results is investigated in this paper. The cutting parameters used in the investigation are cutting speed, feed rate and depth of cut. The Taguchi method was used to design the experiment since it provides relatively fewer experimental runs when compared to classical experimental design methods. Mean Absolute Percentage Error (MAPE) values are used to compare RSM’s surface roughness prediction accuracy on both water and kerosene-based results. It is observed that the surface roughness profiles for either coolant are similar, and the use of water coolant yields smoother surface finishes when compared to the use of kerosene. It is also observed that RSM displays better accuracy in predicting water-based surface roughness.


2020 ◽  
Vol 36 ◽  
pp. 28-46
Author(s):  
Youssef Touggui ◽  
Salim Belhadi ◽  
Salah Eddine Mechraoui ◽  
Mohamed Athmane Yallese ◽  
Mustapha Temmar

Stainless steels have gained much attention to be an alternative solution for many manufacturing industries due to their high mechanical properties and corrosion resistance. However, owing to their high ductility, their low thermal conductivity and high tendency to work hardening, these materials are classed as materials difficult to machine. Therefore, the main aim of the study was to examine the effect of cutting parameters such as cutting speed, feed rate and depth of cut on the response parameters including surface roughness (Ra), tangential cutting force (Fz) and cutting power (Pc) during dry turning of AISI 316L using TiCN-TiN PVD cermet tool. As a methodology, the Taguchi L27 orthogonal array parameter design and response surface methodology (RSM)) have been used. Statistical analysis revealed feed rate affected for surface roughness (79.61%) and depth of cut impacted for tangential cutting force and cutting power (62.12% and 35.68%), respectively. According to optimization analysis based on desirability function (DF), cutting speed of 212.837 m/min, 0.08 mm/rev feed rate and 0.1 mm depth of cut were determined to acquire high machined part quality


2017 ◽  
Vol 753 ◽  
pp. 183-187 ◽  
Author(s):  
Muhammad M. Liman ◽  
Khaled Abou-El-Hossein ◽  
Abubakar I. Jumare ◽  
Peter Babatunde Odedeyi ◽  
Abdulqadir N. Lukman

Contact lens manufacture requires high accuracy and surface integrity. Surface roughness an important response because it has direct influence toward the part performance and the production cost. Hence, choosing optimal cutting parameters will not only improve the quality measure but also the productivity. This research work is therefore aimed at developing a predictive surface roughness model and investigate a finish cutting conditions of ONSI-56 contact lens polymer with a monocrystalline diamond cutting tool. In this work, a novel surface roughness prediction model, in which the feed rate, cutting speed and depth of cut are considered is developed. This combined process was successfully modeled using a Box–Behnken design (BBD) with response surface methodology (RSM). The effects of feed rate, cutting speed and depth of cut were investigated. Analysis of variance (ANOVA) showed that the proposed quadratic model effectively interpreted the experimental data with coefficients of determination of R2 = 0.89 and adjusted R2 = 0.84. The worse surface value was obtained at high feedrate and low spindle speed.


2013 ◽  
Vol 641-642 ◽  
pp. 367-370
Author(s):  
Gui Qiang Liang ◽  
Fei Fei Zhao

Abstract In the present study, an attempt has been made to investigate the effect of cutting parameters (cutting speed, feed rate and depth of cut) on cutting forces (feed force, thrust force and cutting force) and surface roughness in milling of Quartz glas using diamond wheel. The cutting process in the up-cut milling of glass is discussed and the cutting force measured. The cutting force gradually increases with the cutter rotation at the beginning of the cut, and oscillates about a constant mean value after a certain undeformed chip thickness. The results show that cutting forces and surface roughness do not vary much with experimental cutting speed in the range of 55–93 m/min. The suggested models of cutting forces and surface roughness and adequately map within the limits of the cutting parameters considered.


Author(s):  
M. M. Reddy ◽  
N. S. Reddy ◽  
J. N. Evan

Past two decades, the usage of ceramic tools has increased especially in milling and turning process. These advanced ceramic tools have good characteristics that are capable in maintaining high hardness in temperatures and also wears much slower when compared to carbide tools. With limited data available on the tool itself, research is to be done on these advance ceramic tools. The main purpose of this research project is to determine the cutting parameters affecting the cutting temperature and cutting force. The cutting parameters are cutting speed, depth of cut and feed rate. Silicon Nitride is chosen as the tool and Steel AISI4140 is chosen as the work piece. Analysis is conducted through Box-Behnken method with 3 levels, 3 factors and 2 responses. The regression model for cutting temperature and cutting force responses are identified. Analysis of Variance (ANOVA) is done to determine the effect of the cutting parameters and their contribution towards the cutting temperature and cutting force response. It is found that feed rate has the most influence on cutting temperature and force. The optimal cutting parameters that produce the lowest cutting temperature and lowest cutting force are also obtained.


2010 ◽  
Vol 126-128 ◽  
pp. 911-916 ◽  
Author(s):  
Yuan Wei Wang ◽  
Song Zhang ◽  
Jian Feng Li ◽  
Tong Chao Ding

In this paper, Taguchi method was applied to design the cutting experiments when end milling Inconel 718 with the TiAlN-TiN coated carbide inserts. The signal-to-noise (S/N) ratio are employed to study the effects of cutting parameters (cutting speed, feed per tooth, radial depth of cut, and axial depth of cut) on surface roughness, and the optimal combination of the cutting parameters for the desired surface roughness is obtained. An exponential regression model for the surface roughness is formulated based on the experimental results. Finally, the verification tests show that surface roughness generated by the optimal cutting parameters is really the minimum value, and there is a good agreement between the predictive results and experimental measurements.


2020 ◽  
Vol 853 ◽  
pp. 18-23
Author(s):  
F.A Oyekunle ◽  
Khaled Abou-El-Hossein

Single-point diamond turning is a technique of ultra-high precision machining that provides excellent quality of surface for mirrors, spherical and aspherical components. In SPDT just like other machining processes, cutting fluid plays an important role in metal removal and tool condition which largely influence the surface of diamond turned surface. In this paper, the surface roughness of diamond turned RSA 431 was studied by investigating the effect of kerosene mist and water as cutting fluids. Higher order response surface of Box-Behnken design was generated using fewer runs than a normal factorial technique. The cutting parameters that were varied for both experiments were depth of cut, feed and, speed. Taylor Hobson PGI Dimension XL surface Profilometer was used to measure the surface roughness after each experimental run. The results show that water when used as cutting fluid during machining, produces better surface roughness than kerosene mist. Predictive models for surface roughness were developed for each experiment. Values from the Mean Absolute Percent Error (MAPE) was used to evaluate and compare the two models to determine the accuracy. RSM also proved to be a better methodology of predicting surface roughness.


2011 ◽  
Vol 2 (2) ◽  
pp. 79-87 ◽  
Author(s):  
I. Hanafi ◽  
A. Khamlichi ◽  
F. Mata Cabrera ◽  
E. Almansa ◽  
A. Jabbouri

Abstract Non-reinforced and reinforced Poly-Ether-Ether-Ketone (PEEK) plastics have excellent mechanical and thermal properties. Machining is an efficient process that can be used to manufacture specific mechanical parts made from PEEK composites. Researchers have focused on improving the performance of machining operations with the aim of minimizing costs and improving quality of manufactured products, in order to get the best surface roughness and the minimum cutting force. The parameters evaluated are the cutting speed, the depth of cut and the feed rate. In this paper, the effect of the mentioned parameters on surface roughness and cutting force, in dry turning of reinforced PEEK with 30% of carbon fibers (PEEK CF30) using TiN coated cutting tools, is analyzed through using robust design techniques such as Taguchi's design method, signal-to-noise (S/N) ratio and statistical analysis tools such as Pareto-ANOVA. The obtained results have shown that Taguchi method and Pareto ANOVA are suitable for optimizing the cutting parameters with the minimum possible number of experiments, and the optimized process parameters were determined for surface roughness and cutting force criteria.


2018 ◽  
Vol 928 ◽  
pp. 139-143 ◽  
Author(s):  
Muhammad Mukhtar Liman ◽  
K. Abou-El-Hossein ◽  
Peter Babatunde Odedeyi

In this paper, Single point diamond turning tests were carried out on rigid gas permeable contact lens (ONSI-56), using monocrystalline diamond cutting tools. During the tests, the depth of cut, feed rate, and cutting speed were varied. Turning experiments were designed based on Box-Behnken statistical experimental design technique. An artificial neural network (ANN) and response surface (RS) model were developed to predict surface roughness on the contact lens turned part surface. In the development of predictive models, cutting parameters of cutting speed, depth of cut and feed rate were considered as model variables. The required data for predictive models are obtained by conducting a series of turning test and measuring the surface roughness data. Good agreement is observed between the predictive models results and the experimental measurements. The ANN and RSM models for ONSI-56 contact lens turned part surfaces are compared with each other for accuracy and computational cost.


Sign in / Sign up

Export Citation Format

Share Document