Experimental Investigations of Cutting Parameters Influence on Cutting Forces and Surface Roughness of Quartz Glass

2013 ◽  
Vol 641-642 ◽  
pp. 367-370
Author(s):  
Gui Qiang Liang ◽  
Fei Fei Zhao

Abstract In the present study, an attempt has been made to investigate the effect of cutting parameters (cutting speed, feed rate and depth of cut) on cutting forces (feed force, thrust force and cutting force) and surface roughness in milling of Quartz glas using diamond wheel. The cutting process in the up-cut milling of glass is discussed and the cutting force measured. The cutting force gradually increases with the cutter rotation at the beginning of the cut, and oscillates about a constant mean value after a certain undeformed chip thickness. The results show that cutting forces and surface roughness do not vary much with experimental cutting speed in the range of 55–93 m/min. The suggested models of cutting forces and surface roughness and adequately map within the limits of the cutting parameters considered.

2018 ◽  
Vol 14 (1) ◽  
pp. 67-76
Author(s):  
Mohanned Mohammed H. AL-Khafaji

The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. The inputs to all networks are cutting speed, depth of cut, and feed rate. All networks performances (outputs) for all machining force components (cutting force, passive force and feed force) showed perfect match with the experimental data and the calculated correlation coefficients were equal to one. The built network for the chip thickness ratio is giving correlation coefficient equal one too, when its output compared with the experimental results. These networks (models) are used to optimize the cutting parameters that produce the lowest machining force and chip thickness ratio. The models showed that the optimum machining force was (240.46 N) which can be produced when the cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.27 mm/rev). The proposed network for the chip thickness ratio showed that the minimum chip thickness is (1.21), which is at cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.17 mm/rev).


Mechanika ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 231-241 ◽  
Author(s):  
Mustafa ÖZDEMİR ◽  
Mehmet Tuncay KAYA ◽  
Hamza Kemal AKYILDIZ

In this study, effects of cutting speed (V), feed rate (f), depth of cut (a) and tool tip radius (R) on  surface roughness (Ra, Rz, and Rt) and cutting forces (radial force (Fx), tangential force (Fy), and feed force (Fz)) in hard finish turning processes of hardened 42CrMo4 (52 HRC) material was investigated experimentally. Taguchi’s mixed level parameter design (L18) is used for the experimental design (2x1,3x3). The signal-to-noise ratio (S/N) was used in the evaluation of test results.  By using Taguchi method, cutting parameters giving optimum surface roughness and cutting forces were determined. Regression analyses are applied to predict surface roughness and cutting forces. Analysis of variance (ANOVA) is used to determine the effects of the machining parameters on surface roughness and cutting forces. According to ANOVA analysis, the most important cutting parameters were found to be feed rate for surface roughness and depth of cut among cutting forces.  By conducting validation experiments, optimization was seen to be applied successfully.


2010 ◽  
Vol 154-155 ◽  
pp. 694-700
Author(s):  
Yue Ding ◽  
Xi Bin Wang ◽  
Li Jing Xie ◽  
Hao Yang

The objective of this paper is to study the cutting forces in hard turning T250 steel with CBN tools. Experiments based on the Box-Behnken design were conducted to develop the cutting forces models by response surface methodology (RSM). Significance tests of the model are performed by the analysis of variance (ANOVA). It is also discussed the effects of cutting parameters (cutting speed, feed rate and depth of cut) on the cutting force components. The results show that the models can fit experimental data via analysis of variance. The most important cutting parameter is depth of cut, followed by feed rate, while the effect of cutting speed can be neglected. Compared to cutting force and feed force, thrust force is the largest. In addition, the cutting forces generated by the uncoated tool are smaller than by the coated one due to tool wear.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2020 ◽  
Vol 36 ◽  
pp. 28-46
Author(s):  
Youssef Touggui ◽  
Salim Belhadi ◽  
Salah Eddine Mechraoui ◽  
Mohamed Athmane Yallese ◽  
Mustapha Temmar

Stainless steels have gained much attention to be an alternative solution for many manufacturing industries due to their high mechanical properties and corrosion resistance. However, owing to their high ductility, their low thermal conductivity and high tendency to work hardening, these materials are classed as materials difficult to machine. Therefore, the main aim of the study was to examine the effect of cutting parameters such as cutting speed, feed rate and depth of cut on the response parameters including surface roughness (Ra), tangential cutting force (Fz) and cutting power (Pc) during dry turning of AISI 316L using TiCN-TiN PVD cermet tool. As a methodology, the Taguchi L27 orthogonal array parameter design and response surface methodology (RSM)) have been used. Statistical analysis revealed feed rate affected for surface roughness (79.61%) and depth of cut impacted for tangential cutting force and cutting power (62.12% and 35.68%), respectively. According to optimization analysis based on desirability function (DF), cutting speed of 212.837 m/min, 0.08 mm/rev feed rate and 0.1 mm depth of cut were determined to acquire high machined part quality


2007 ◽  
Vol 339 ◽  
pp. 78-83 ◽  
Author(s):  
Jing He Wang ◽  
Shen Dong ◽  
H.X. Wang ◽  
Ming Jun Chen ◽  
Wen Jun Zong ◽  
...  

The method of single point diamond turning is used to machine KDP crystal. A regression analysis is adopted to construct a prediction model for surface roughness and cutting force, which realizes the purposes of pre-machining design, prediction and control of surface roughness and cutting force. The prediction model is utilized to analyze the influences of feed, cutting speed and depth of cut on the surface roughness and cutting force. And the optimal cutting parameters of KDP crystal on such condition are acquired by optimum design. The optimum estimated values of surface roughness and cutting force are 7.369nm and 0.15N, respectively .Using the optimal cutting parameters, the surface roughness Ra, 7.927nm, and cutting force, 0.19N, are obatained.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 137 ◽  
Author(s):  
Kairui Zheng ◽  
Fazhan Yang ◽  
Na Zhang ◽  
Qingyu Liu ◽  
Fulin Jiang

Titanium alloys are widely used in various fields, but their machinability is poor because the chip would easily adhere to the tool surface during cutting, causing poor surface quality and tool wear. To improve the cutting performance of titanium alloy Ti-6Al-4V, experiments were conducted to investigate the effect of micro textured tool on the cutting performances. The cemented carbide tools whose rake faces were machined with line, rhombic, and sinusoidal groove textures with 10% area occupancy rates were adopted as the cutting tools. The effects of cutting depth and cutting speed on feed force and main cutting force were discussed based on experimental results. The results show that the cutting force produced by textured tools is less than that produced by non-textured tools. Under different cutting parameters, the best cutting performance can be obtained by using sinusoidal textured tools among the four types of tools. The wear of micro textured tools is significantly lower than that of non-textured tools, due to a continuous lubrication film between the chip and the rake face of the tool that can be produced because the micro texture can store and replenish lubricant. The surface roughness obtained using the textured tool is better than that using the non-textured tool. The surface roughness Ra can be reduced by 35.89% when using sinusoidal textured tools. This study is helpful for further improving the cutting performance of cemented carbide tools on titanium alloy and prolonging tool life.


2011 ◽  
Vol 338 ◽  
pp. 709-713
Author(s):  
Zhen Hua Wang ◽  
Jun Tang Yuan

In this paper, 24full factorial design and homogeneous design were applied to the high-speed milling experiments for Mg-6Nd-4Gd-3Y magnesium alloy. According to the experimental results of cutting force, the effect of cutting parameters (cutting speed, feed per tooth, depth of cut, and width of cut) on cutting force was discussed, and the nonlinear polynomial regression models of cutting forces based on the cutting parameters were presented by the partial least-square regression.


Author(s):  
Xiubing Jing ◽  
Yanling Tian ◽  
Yanjie Yuan

This paper presented the effect of run out on the experimental characteristic of micro-milling brass using carbide micro-end mills. A method of calculation and measurement for the run out of tool-holder-spindle assembly in micro-end mill was developed. A series of micro-milling process experiments were carried out under varying cutting parameters. The effect of run out on cutting forces, effect of cutting parameters on surface roughness, and size effect were analyzed. It was seen that the cutting force signature was seriously affected by run out in the micro-milling process. When the feed per tooth is less than the run out, the cutting force signals showed that only one cutter flute engaged in cutting process due to the effect of run out. It was also seen that the cutting force signature showed erratic variations due to the effect of tool–workpiece and the run out of tool tip at higher spindle speed. Surface roughness was affected by both cutting speed and feed per tooth. For lower cutting speed, there was increase in the surface roughness with the decrease in the cutting speed due to the effect of built-up edge. For higher cutting speed, there was increase in the surface roughness with the increase in the cutting speed due to dominance of the shearing effects. When the feed per tooth was less than the minimum chip thickness, due to the indentation and ploughing-dominated process, nonlinear increase of specific shear energy can be obtained. At lower feed per tooth, the specific energy increases with increased cutting speed. These results are used to provide strategies to optimize cutting parameters and achieve better surface quality in micro-milling brass process.


2011 ◽  
Vol 189-193 ◽  
pp. 3084-3088
Author(s):  
De Wen Tang ◽  
Ru Shu Peng ◽  
Rui Lan Zhao

High speed milling hardened mould steel (above HRC50) at pocket corner generates the cutting forces increase and vibration gets fiercely because of the sudden change of cutting direction. It will cause serious wear and possible breakage of cutting tool, and poor quality of parts. Hence, the need to select reasonable cutting parameters and adopt appropriate cutting strategies will help them to achieve their goal. In this paper, the effects cutting parameters including cutting speed, pocket corner angle, feed rate per tooth and radial depth of cut on cutting force and vibration are studied. The results show that sharper pocket corner results in the increase of cutting force and makes vibration strong. Cutting force increase with the increase of cutting speeding, feed per tooth and radial depth of cut. The optimum of cutting speed leads to the decrease of vibration. It is proposed that cutting parameters should be optimized to improve tool life and processing efficiency.


Sign in / Sign up

Export Citation Format

Share Document