Notch Effect on the Corrosion Fatigue Behavior of an Austenitic Stainless Steel

2007 ◽  
Vol 345-346 ◽  
pp. 995-998
Author(s):  
Chih Kuang Lin ◽  
Po Fu Kuo

The objective of this study is to characterize the influence of notch effect on the high-cycle corrosion fatigue properties of AISI 347 stainless steel in various environments, namely, air, water, NaCl, NaCl plus inhibitor, and H2SO4 solutions. For smooth-surface and semi-circular notch specimens, the rank of fatigue strength in all of the given environments generally took the following order: air ≈ salt water plus inhibitor > deionized water > salt water > sulfuric acid solution. For V-notch specimens, the S-N curves were separated into two groups, i.e. one with air and 3.5% NaCl plus inhibitor and the other with deionized water, 3.5% NaCl and H2SO4. This was attributed to a greater effect of localized acidification occurring at the root of V-notch as compared to the smooth surface and semi-circular notch.

2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940039
Author(s):  
Hang Zhang ◽  
Tao Yang ◽  
Kai Sun ◽  
Yingcan Hu

In this paper, the corrosion-fatigue behavior of 301L stainless steel (SS) welded joints using narrow gap laser wire welding under the different stress ratio and concentrations of Cl[Formula: see text] has been investigated. Corrosion fatigue life curve (S-N) under different conditions was tested and fitted to obtain the fatigue limit. The microstructures and fracture surfaces of specimens were examined by optical microscopy (OM) and scanning electron microscopy (SEM). EBSD results have shown that chromium depletion in the weld heat-affected zone (HAZ) contributes to the decrease of corrosion fatigue properties in the HAZ.


2020 ◽  
Vol 318 ◽  
pp. 01008
Author(s):  
Alina Timmermann ◽  
Mohamed Abdulgader ◽  
Leif Hagen ◽  
Alexander Koch ◽  
Philipp Wittke ◽  
...  

Thermally sprayed protective coatings are applied onto many mechanically stressed components such as support structures, shafts, turbine blades or heat exchangers. In addition to the static or cyclic load, a superimposition with corrosion processes occurs in many cases. Thermal sprayed ZnAl coatings are known for their performant corrosion protection properties. Within this context, the potential of ZnAl-based layer systems was analyzed regarding corrosion fatigue behavior. Therefore, a timeand cost-efficient testing strategy based on a corrosion-superimposed load increase procedure was used to estimate the effects of a corrosive attack during cyclic loading. The investigated coating systems were thermally sprayed and partially post-processed with a Machine Hammer Peening (MHP) operation. This treatment was identified as an appropriate technique for compressing and smoothing coated surfaces. The inter-relationships between the parametrization of the MHP process, the resulting surface integrity, and the estimated corrosion fatigue properties were analyzed. The investigations indicate a positive effect of MHP post-processing operations on the surface properties of the ZnAl-based coating system.


Sign in / Sign up

Export Citation Format

Share Document