Crack Growth Mechanisms from 3-D Surface Flaw with Varied Dipping Angle under Uniaxial Compression

2007 ◽  
Vol 353-358 ◽  
pp. 2353-2356 ◽  
Author(s):  
Y.S.H. Guo ◽  
R.H.C. Wong ◽  
K.T. Chau ◽  
Wei Shen Zhu ◽  
Shu Cai Li

A number of instability problems in rock engineering projects are caused by crack propagation. However, crack growth mechanisms from 3-dimentional flaw are not fully understood, in particular for 3-D flaw case with varied dipping angle. This study focuses on 3-D surface flaw using real rock specimens containing a flaw with varied inclination angle α from axial loading and dipping angle γ from specimen surface under uniaxial compression. Acoustic emission technique was used for tracing the initiation and growth of micro-cracks inside of specimen. It was found that crack growth process is affected by the dipping angle γ of the 3-D flaw. When dipping angle γ ≠ 90º, the thickness of rock above the flaw plane is thinner than that of below the flaw plane. As a result, compressive crack and wing crack initiated easily from the thinner flaw tips. And, the normalized stress for crack initiation σi /σc, AE events and the AE energy for crack growth decreases with the dipping angle γ. However, for γ = 90º, the thickness of rock above and below of the flaw tips is the same, it was observed that anti-wing crack (crack growth direction opposite to wing crack) initiated first at a certain place away from the flaw tips, then wing crack and compressive crack emerged at the late stage. For this case, the stress σi /σc, AE events and the AE energy for crack initiation and propagation are at a high value. Thus, for rock mass contains flaws geometry with small dipping angle, some problems of crack propagation may be induced easily during excavation.

Author(s):  
Robina H. C. Wong ◽  
Y. S. H. Guo ◽  
L. Y. Li ◽  
K. T. Chau ◽  
W. S. Zhu ◽  
...  

2006 ◽  
Vol 306-308 ◽  
pp. 139-144
Author(s):  
Hyun Woo Lee ◽  
Se-Jong Oh

Crack growth behavior of S45C notched tubular specimen was studied to predict fatigue crack initiation and crack propagation under biaxial loading conditions. Stress-strain field near the hole was analyzed by ANSYS. The crack initiation lives and the crack initiation locations were predicted from strain based theories, and the analysis results were compared with the test results. Crack propagation behaviors were studied to understand the reason of crack branching and crack growth rates changing under biaxial loading conditions. Crack growth direction was also observed to find the governing factors of the fatigue damage under biaxial loading conditions.


2004 ◽  
Vol 126 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Yanyao Jiang ◽  
Miaolin Feng

Fatigue crack propagation was modeled by using the cyclic plasticity material properties and fatigue constants for crack initiation. The cyclic elastic-plastic stress-strain field near the crack tip was analyzed using the finite element method with the implementation of a robust cyclic plasticity theory. An incremental multiaxial fatigue criterion was employed to determine the fatigue damage. A straightforward method was developed to determine the fatigue crack growth rate. Crack propagation behavior of a material was obtained without any additional assumptions or fitting. Benchmark Mode I fatigue crack growth experiments were conducted using 1070 steel at room temperature. The approach developed was able to quantitatively capture all the important fatigue crack propagation behaviors including the overload and the R-ratio effects on crack propagation and threshold. The models provide a new perspective for the R-ratio effects. The results support the notion that the fatigue crack initiation and propagation behaviors are governed by the same fatigue damage mechanisms. Crack growth can be treated as a process of continuous crack nucleation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xizhen Sun ◽  
Fanbao Meng ◽  
Ce Zhang ◽  
Xucai Zhan ◽  
He Jiang

The geometric distribution of initial damages has a great influence on the strength and progressive failure characteristics of the fractured rock mass. Initial damages of the fractured rock were simplified as parallel cracks in different geometric distributions, and then, the progressive failure and acoustic emission (AE) characteristics of specimens under the uniaxial compression loading were analyzed. The red sandstone (brittle materials) specimens with the parallel preexisting cracks by water jet were used in the tests. The energy peak and stress attenuation induced by the energy release of crack initiation were intuitively observed in the test process. Besides, three modes of rock bridge coalescence were obtained, and wing crack was the main crack propagation mode. The wing crack and other cracks were initiated in different loading stages, which were closely related to the energy level of crack initiation. The propagation of wing crack (stable crack) consumed a large amount of energy, and then, the propagation of shear crack, secondary crack, and anti-wing crack (unstable crack) was inhibited. The relationship between the crack propagation mode and the geometric distribution of existing cracks in the specimen was revealed. Meanwhile, the strength characteristic and failure mode of fractured rock with the different geometric distributions of preexisting crack were also investigated. The energy evolution characteristics and crack propagation were also analyzed by numerical modeling (PFC2D).


CORROSION ◽  
10.5006/3472 ◽  
2020 ◽  
Vol 76 (6) ◽  
pp. 601-615 ◽  
Author(s):  
Hamid Niazi ◽  
Karina Chevil ◽  
Erwin Gamboa ◽  
Lyndon Lamborn ◽  
Weixing Chen ◽  
...  

The effects of mechanical factors on crack growth behavior during the second stage of high pH stress corrosion cracking in pipeline steel were investigated by applying several loading scenarios on compact tension (CT) specimens. The main mechanism for stage 2 of intergranular crack propagation is anodic dissolution ahead of the crack tip which is highly dependent on crack-tip strain rate. The maximum and minimum crack growth rates were 3 × 10−7 mm/s and 1 × 10−7 mm/s, respectively. It was observed that several factors such as mean stress intensity factor, amplitude, and frequency of loading cycles determine the crack-tip strain rate. Low R-ratio cycles, particularly high-frequency ones, enhance secondary crack initiation, and crack coalescence on the free surface. This mechanism accelerates crack advance on the free surface which is accompanied with an increase in mechanical driving force for crack propagation in the thickness direction. These findings have implications for pipeline operators and could be used to increase the lifespan of the cracked pipelines at stage 2. For those pipelines, any loading condition that increases the strain rate ahead of the crack tip enhances anodic dissolution and is detrimental. Additionally, secondary crack initiation and coalescence could be minimized by avoiding internal pressure fluctuation, particularly rapid large pressure fluctuations.


2007 ◽  
Vol 353-358 ◽  
pp. 1049-1052
Author(s):  
Ming Li Huang ◽  
Shan Yong Wang ◽  
Wei Lu ◽  
Wan Cheng Zhu

In this paper, a Material Failure Process Analysis code (MFPA2D) was employed to investigate the interaction of end effect zone of specimen with the wing crack propagation inside the brittle specimen containing pre-existing flaws under uniaxial compression comparing with the experimental results. The numerical results show that the shorter the distance between the pre-existing flaw and the specimen's end , the slower the crack propagation process and the shorter wing propagation length is , and vice versa. In addition, the end effect zone was also influenced by the wing crack propagation.


CORROSION ◽  
10.5006/3711 ◽  
2021 ◽  
Author(s):  
Hamid Niazi ◽  
Greg Nelson ◽  
Lyndon Lamborn ◽  
Reg Eadie ◽  
Weixing Chen ◽  
...  

Pipelines undergo sequential stages before failure caused by High pH Stress Corrosion Cracking (HpHSCC). These sequential stages are incubation stage, intergranular crack initiation (Stage 1a), crack evolution to provide the condition for mechanically driven crack growth (Stage 1b), sustainable mechanically driven crack propagation (Stage 2), and rapid crack propagation to failure (Stage 3). The crack propagation mechanisms in Stage 1b are composed of the nucleation and growth of secondary cracks on the free surface and crack coalescence of secondary cracks with one another and the primary crack. These mechanisms continue until the stress intensity factor (<i>K</i>) at the crack tip reaches a critical value, known as <i>K</i><sub>ISCC</sub>. This investigation took a novel approach to study Stage 1b in using pre-cracked Compact Tension (CT) specimens. Using pre-cracked specimens and maintaining <i>K</i> at less than <i>K</i><sub>ISCC</sub> provided an opportunity to study crack initiation on the surface of the specimen under plane stress conditions in the presence of a pre-existing crack. In the present work, the effects of cyclic loading characteristics on crack growth behavior during Stage 1b were studied. It was observed that the pre-existing cracks during Stage 1b led to the initiation of secondary cracks. The initiation of the secondary cracks at the crack tip depended on loading characteristics, <i>i.e</i>., the amplitude and frequency of load fluctuations. The secondary cracks at the crack tip can be classified into four categories based on their positions with respect to the primary crack. A high density of intergranular cracks formed in the cyclic plastic zone generated by low R-ratio cycles. The higher the frequency of the low <i>R</i>-ratio cycles, the higher the density of the intergranular cracks forming in the cyclic plastic zone. The crack growth rate increased with an increase in either the amplitude or the frequency of the load fluctuations. The minimum and maximum crack growth rates were 8×10<sup>-9</sup> mm/s and 4.2×10<sup>-7</sup> mm/s, respectively, with <i>R</i>-ratio varying between 0.2 and 0.9, frequency varying between 10<sup>-4</sup> Hz and 5×10<sup>-2</sup> Hz, and at a fixed stress intensity factor of 15 MPa.m<sup>0.5</sup>. It was found that avoiding rapid and large load fluctuations slowed down crack geometry evolution and delayed onset of Stage 2. The implication of these results for pipeline operators is that reducing internal pressure fluctuations by reducing the frequency and/or amplitude of the fluctuations can expand Stage 1 and increase the reliable lifetime of operating pipelines.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Xin Yang ◽  
Xiangguo Zeng ◽  
Chuanjin Pu ◽  
Dingjun Xiao

In order to study the dynamic crack propagation law in fissured rock under the different fillings, a borehole with 7 mm diameter was processed in the center of a polymethyl methacrylate (PMMA) specimen. The preexisting fissure with different angles (θ = 0°, 45°, and 90°) and different distances (L = 20, 30, 40, 50, and 60 mm) was prefabricated around the borehole. Air, soil, and water were employed as fillings in the fissure, respectively. The experiment of explosive loading was carried out by a single detonator, and the dynamic crack propagation process of the experimental specimens was simulated by nonlinear dynamics software AUTODYN. The results show that the blast-induced cracks are the most favorable and unfavorable to propagate when θ = 0° and θ = 45°, respectively. The length of the far-end wing crack decreases with the increase of the distance L, and the length of the far-end wing crack in the air-filled specimens is larger than those in soil-filled and water-filled specimens. The damage-pressure curve of the far-end wing crack initiation point shows “S”-type change, and the damage-pressure curve shows two obvious damage evolution processes of initial nonlinear and later linear stages. With the increase of the angle, the distance from the borehole to the crack initiation point decreases and the compressive stress wave peak value should increase, but the tensile force peak value decreases. Meanwhile, the relationships between pressure and average velocity of the initiation point and L, θ, and fillings are established, respectively. The numerical simulation agrees with the experimental results well. It can be seen that the fillings types, angle, and distance have a mutual restraint relationship with the reflected and absorbed stress wave energy. The phenomenon of crack propagation under different fillings can be explained well from the viewpoint of discontinuity degree and stress wave energy, which reveals the general law of blast-induced crack propagation.


2007 ◽  
Vol 353-358 ◽  
pp. 2329-2332
Author(s):  
Xing Dong Zhao ◽  
Yuan Hui Li ◽  
Rui Fu Yuan

AE technique is proved a efficient tool for real-time monitoring of the crack initiation and propagation during rock failure process under uniaxial compression condition. In this paper, An AE system was employed to investigate the crack propagation and failure modes of three groups of granite specimens (80mm×100mm×170mm) with the same pre-existing crack. The AE sensors can be surface mounted. By using a Geiger location algorithm, AE event location can be determined by time-of-arrival times. The propagation velocities of p-wave or s-wave of granite samples were measured. Experiments on pre-existing crack propagation of granite samples were carried out on the press machine. From the testing result, failure mode of three kinds of granite samples was mainly shear failure, while the secondary crack propagated slowly and could not influence the failure mode of granite sample. By surveying the relation of accumulative AE events and stress-strain curve, AE activity represents different characters with stress-strain changing during the total loading process, microcracking contributing to fracture propagation with strain corrosion. AE location result reflected crack initiation and propagation, which is of great importance in studying rock instability and predicting rock failure mode.


Sign in / Sign up

Export Citation Format

Share Document