Non-Destructive Evaluation of Creep Damage of Ni-Based Superalloy Using A Scanning Blue Laser Microscope

2007 ◽  
Vol 353-358 ◽  
pp. 2391-2394 ◽  
Author(s):  
Kuniaki Akahoshi ◽  
Kazuhiro Ogawa ◽  
Hideo Miura

In order to assure the reliability of advanced gas turbine systems, it is very important to evaluate the damage of high temperature materials such as Ni-based superalloys under creep and fatigue conditions quantitatively. The refractive index of the gamma-prime phase is found to be smaller than that of the gamma phase in the Ni-based superalloy, when the wavelength of an irradiated laser beam is shorter than 500 nm. Therefore, it is possible to evaluate the creep damage of this material quantitatively and non-destructively by observing the change of the micro texture in a grain (rafting) using a scanning laser microscope.

Author(s):  
Brian E. Shannon ◽  
Carl E. Jaske ◽  
Gustavo Miranda

Statoil Tjelbergodden operates a 2,400 ton/day methanol plant in Norway. In order to assess the condition and reliability of high temperature components within the reformer, a series of advanced non-destructive examination (NDE) technologies were applied to radiant catalyst tubes, outlet pigtails, and outlet collection headers. The inspection techniques were selected and developed to provide data that could easily be used in the engineering assessment of the high-temperature components. Special focus was given to detecting and quantifying high-temperature creep damage. This paper describes the NDE techniques that were employed and provides examples of typical data obtained by using the techniques. Catalyst tubes were inspected using the H SCAN® (Figure 1) multiple sensor technology. This technique utilizes two types of ultrasonic sensors, eddy current sensors, laser measurements, and elevation location sensors in scanning each catalyst tube. The H SCAN® P-CAT™ (Figure 2) technique is applied to outlet pigtails, while the H SCAN® H-CAT™ (Figure 3) technique is applied to outlet headers.


Cryogenics ◽  
1996 ◽  
Vol 36 (2) ◽  
pp. 83-86 ◽  
Author(s):  
Y. Tavrin ◽  
H.-J. Krause ◽  
W. Wolf ◽  
V. Glyantsev ◽  
J. Schubert ◽  
...  

Author(s):  
Pamela Henderson ◽  
Jacek Komenda

The use of single crystal (SX) nickel-base superalloys will increase in the future with the introduction of SX blades into large gas turbines for base-load electricity production. Prolonged periods of use at high temperatures may cause creep deformation and the assessment of damage can give large financial savings. A number of techniques can be applied for life assessment, e.g. calculations based on operational data, non-destructive testing or material interrogation, but because of the uncertainties involved the techniques are often used in combination. This paper describes a material interrogation (metallographic) technique for creep strain assessment in SX alloys. Creep tests have been performed at 950°C on the SX alloy CMSX-4 and quantitative microstructural studies performed on specimens interrupted at various levels of strain. It was found that the strengthening γ′-particles, initially cuboidal in shape, coalesced to form large plates or rafts normal to the applied stress. The γ-matrix phase also formed plates. CMSX-4 contains ∼ 70 vol % γ′-particles and after creep deformation the microstructure turned itself inside out, i.e. the gamma “matrix” became the isolated phase surrounded by the γ′-“particles”. This can cause problems for computerised image analysis, which in this case, were overcome with the choice of a suitable measurement parameter. The rafts reached their maximum length before 2% strain, but continued to thicken with increasing strain. Although of different dimensions, the aspect ratios (length/thickness ratio) of the gamma-prime rafts and the gamma plates were similar at similar levels of strain, increasing from ∼1 at zero strain to a maximum of ∼3 at about 1–2 % strain. Analysis of microstructural measurements from rafting studies on SX alloys presented in the literature showed that the aspect ratios of the γ- and γ′-phases were similar and that at a temperature of 950–1000°C a maximum length/thickness ratio of about 2.5–3.5 is reached at 1 to 2% creep strain. Measurement of gamma-prime raft or (or gamma plate) dimensions on longitudinal sections of blades is thus a suitable method for high temperature creep damage assessment of SX alloys. This gives a considerable advantage over conventional Ni-base superalloys whose microstructures are usually very stable with respect to increasing creep strain.


2021 ◽  
Vol 11 (1) ◽  
pp. 48-54
Author(s):  
The Man Nguyen ◽  
Duc Vinh Vu

: In the oil and gas Industry, insulation materials can be used widely for piping system, tank and vessel in either low or high temperature applications. CUI can cause equipment degradation, fluid leak, which lead to explosion or environmental pollution and the cost will very expensive. Therefore, CUI need to be detected early to prevent damage. Through experiment, Center for Non-Destructive Evaluation (NDE) studied on establishing and appliying 4 NDT procedures for CUI examination on typical petroleum piping using in Vietnam. A discussion is presented below


Sign in / Sign up

Export Citation Format

Share Document