Precision Machining of Silicon Carbide with Diamond Micro Tool Array (DMTA)

2007 ◽  
Vol 364-366 ◽  
pp. 321-326 ◽  
Author(s):  
Qing Liang Zhao ◽  
Guang Yu ◽  
Tao Sun ◽  
Shen Dong

An advanced conditioning technique was developed to precisely and effectively condition the nickel electroplated mono-layer coarse-grained diamond grinding wheel of 46m and 91m grain size with an aim to fabricate Diamond Micro Tool Arrays (DMTA), to meet the high demands of form accuracy, surface quality and low subsurface damage in ductile machining of silicon carbide (SiC). The precision machining experiments on SiC were carried out on a precision grinder to determine the applicability of these fabricated diamond micro tool array (DMTA). The experimental result indicates that the newly developed DMTA is applicable and feasible to realize ductile machining on SiC with high efficiency and low diamond tool wear rate, which shows a good prospect to apply this new concept diamond tool type in precision machining of SiC, as well as the other brittle and hard-to-machine materials.

2007 ◽  
Vol 329 ◽  
pp. 737-742 ◽  
Author(s):  
Qing Liang Zhao ◽  
Da Gang Xie ◽  
Ekkard Brinksmeier ◽  
Otmann Riemer ◽  
Kai Rickens

A novel conditioning technique to precisely and effectively condition the nickel electroplated mono-layer coarse-grained diamond grinding wheel of 91m grain size was developed to fabricate a Diamond Micro Tool Array (DMTA) in ductile machining of brittle materials. During the fabricating process, a copper bonded diamond grinding wheels (91m grain size) dressed by ELID (electrolytic in-process dressing) was applied as a conditioner, a force transducer was used to monitor the conditioning force, and a coaxial optical distance measurement system was used to insitu monitor the modified wheel surface status. The experimental result indicates that the newly developed conditioning technique is applicable and feasible to generate required wheel topography of less than 2μm run-out error and grain geometries. The taper cutting test on BK7 proves the fabricated DMTA is capable of realizing ductile machining of brittle materials.


2007 ◽  
Vol 364-366 ◽  
pp. 578-583 ◽  
Author(s):  
Qing Liang Zhao ◽  
Ekkard Brinksmeier ◽  
Otmann Riemer ◽  
Kai Rickens

In order to realize ductile machining of optical glasses using mono-layer nickel electroplated coarse-grained diamond grinding wheel, a novel conditioning technique features using a copper bonded diamond grinding wheels of 15m grain size dressed by ELID (electrolytic inprocess dressing) to condition the 46m grain sized diamond wheel has been developed. During the conditioning process, a force transducer was used to monitor the conditioning force, a coaxial optical distance measurement system was used to in-situ monitor the modified wheel surface status. White-light interferometry (WLI), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the conditioned wheel surface status as well as the ground optical glass surface topography correspondingly. The experimental result indicates that a minimized wheel radial run-out error of less than 2μm as well as the top-flattened diamond grains of constant wheel peripheral envelop profile were generated on a 5-axis ultra-precision machine tool. The grinding experiment proved that the well conditioned 46μm coarse-grained diamond wheel can be used in realizing the ductile grinding of optical glass BK7, which indicates that the newly developed conditioning technique is feasible and applicable to introduce the coarse-grained diamond wheels into precision machining of brittle and hard-to-machine materials.


2010 ◽  
Vol 135 ◽  
pp. 388-392
Author(s):  
Bei Zhang ◽  
Hong Jun Xu ◽  
Yu Can Fu ◽  
Hong Hua Su

This study has developed a new kind of high performance monolayer brazed diamond tool for ceramic grinding. The grit size of the diamond brazed in the grinding wheel surface is 300m, which has never been reported in diamond tools for ceramic precision machining. The experiment has achieved wonderful surface finish of Zirconia workpiece. This does owe to the designed and precision conditioned topography of the new developed grinding wheel. The topography of the grinding wheel before and after dressing has been measured by means of laser triangulation method. Then the Zirconia workpiece has been ground. The obtained Ra value decreases with no spark grinding times and the minimum Ra of the ground surface is 0.11m. The study proved that the brazed large grit diamond tools would realize high efficiency and precision grinding, namely, high performance of ceramic grinding.


Author(s):  
Changlin Liu ◽  
Jianning Chu ◽  
Jinyang Ke ◽  
Xiao Chen ◽  
Jianguo Zhang ◽  
...  

Abstract Silicon carbide (SiC) is a material of great interest in many industrial applications. However, due to the hardness and brittleness nature, achieving ultra-precision machining of SiC is still challenging. In recent years, function surface with micro-structures has been introduced in cutting tool to suppress wear process. But the wear mechanism of the structured tool has not been revealed completely. Therefore, in present research, molecular dynamic simulations were conducted to investigate the influence of the micro-structure on the nano scale cutting process of 3C-SiC. The simulation results showed that the dislocation propagation in workpiece can be suppressed with a structured tool. The micro-structures have a great influence on the stress distribution in the workpiece subsurface. Furthermore, the abrasive wear of the structured tool is obvious smaller since the edges of the tool became blunt and the contact face between tool and workpiece changed to the close-packed plane of diamond. Moreover, the amorphization of the structured tool is effectively suppressed. This study contributes to the understanding of the details involved in the ultra-precision cutting of SiC.


Author(s):  
Liu Changglin ◽  
Jianning Chu ◽  
Jinyang Ke ◽  
Xiao Chen ◽  
Jianguo Zhang ◽  
...  

Abstract Silicon carbide (SiC) is an important material in many industrial applications. However, due to the hardness and brittleness nature, achieving ultra-precision machining of SiC is still challenging. In recent years, function surface with micro-structures has been introduced in cutting tool to suppress wear process. But the wear mechanism of the structured tool has not been revealed completely. Therefore, in present research, molecular dynamic simulations were conducted to investigate the cutting performance of the micro-structure on the nano scale cutting process of 3C-SiC. The simulation results showed that the dislocation propagation in workpiece can be suppressed with a structured tool. The micro-structures have a significant influence on the stress distribution in the workpiece subsurface. Furthermore, the abrasive wear of the structured tool is obvious smaller since the edges of the tool became blunt and the contact face between tool and workpiece changed to the close-packed plane of diamond. Moreover, the amorphization of the structured tool is effectively suppressed. This study contributes to the understanding of the material behavior involved in the ultra-precision cutting of SiC.


2016 ◽  
Vol 1136 ◽  
pp. 97-103
Author(s):  
Jian Wu Yu ◽  
Li Hua He ◽  
Hong Luo ◽  
Shao Hui Yin

High-efficiency and precision machining of complicated components can be realized by using metal-bonded CBN grinding wheel. However, the difficulty in dressing those superabrasive grinding wheels is one of the main obstructions to popularize its application in industry. Different from the traditional methods, the aim of the paper is to investigate the electro-discharge dressing of bronze-bonded CBN formed grinding wheel. Based on the analysis of electrical discharge parameters and grinding performance, the results show that electro-discharge dressing of CBN formed grinding wheel is feasible. With the increase of pulse duration, pulse voltage and pulse current, the dressing efficiency is increasing, more abrasive grains are protruding, but surface topography of grinding wheel is worsen. Therefore, grinding tests show that, in order to get the dressing quality better and keep the dressing efficiency higher, the bigger electrical discharge parameters are chosen for rough dressing process and the smaller ones are chosen for finishing process.


2015 ◽  
Vol 51 (6) ◽  
pp. 4664-4676 ◽  
Author(s):  
Juan Colmenares ◽  
Dimosthenis Peftitsis ◽  
Jacek Rabkowski ◽  
Diane-Perle Sadik ◽  
Georg Tolstoy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document