Complex Permittivity of 3D Textile SiC/C/SiC Composites Fabricated by Chemical Vapor Infiltration at X-Band Frequency

2008 ◽  
Vol 368-372 ◽  
pp. 1028-1030 ◽  
Author(s):  
Dong Lin Zhao ◽  
Hong Feng Yin ◽  
Yong Dong Xu ◽  
Fa Luo ◽  
Wan Cheng Zhou

Three-dimensional textile SiC fiber reinforced SiC composites with pyrolytic carbon interfacial layer (3D-SiC/C/SiC) were fabricated by chemical vapor infiltration. The microstructure and complex permittivity of the 3D textile SiC/C/SiC composites were investigated. The flexural strength of the 3D textile SiC/C/SiC composites was 860 MPa at room temperature. The real part (ε′) and imaginary part (ε″) of the complex permittivity of the 3D-SiC/C/SiC composites are 9.11~10.03 and 4.11~4.49, respectively at the X-band frequency. The 3D-SiC/C/SiC composites would be a good candidate for structural microwave absorbing material.

2006 ◽  
Vol 11-12 ◽  
pp. 81-84 ◽  
Author(s):  
Dong Lin Zhao ◽  
Hong Feng Yin ◽  
Fa Luo ◽  
Wan Cheng Zhou

Three dimensional textile carbon fiber reinforced silicon carbide (3D textile C/SiC) composites with pyrolytic carbon interfacial layer were fabricated by chemical vapor infiltration. The microstructure and mechanical property of 3D textile C/SiC composites were investigated. A thin pyrolysis carbon layer (0.2 ± μm) was firstly deposited on the surface of carbon fiber as the interfacial layer with C3H6 at 850°C and 0.1 MPa. Methyltrichlorosilane (CH3SiCl3 or MTS) was used for the deposition of the silicon carbide matrix. The conditions used for SiC deposition were 1100°C, a hydrogen to MTS ratio of 10 and a pressure of 0.1 MPa. The density of the composites was 2.1 g cm-3. The flexural strength of the 3D textile C/SiC composites was 438 MPa. The 3D textile C/SiC composites with pyrolytic carbon interfacial layer exhibit good mechanical properties and a typical failure behavior involving fibers pull-out and brittle fracture of sub-bundle. The real part (ε′) and imaginary part (ε″) of the complex permittivity of the 3D-C/SiC composites are 51.53-52.44 and 41.18-42.08 respectively in the frequency range from 8.2 to 12.4 GHz. The 3D-C/SiC composites would be a good candidate for microwave absorber.


1991 ◽  
Vol 250 ◽  
Author(s):  
M. D. Butts ◽  
S. R. Stock ◽  
J. H. Kinney ◽  
T. L. Starr ◽  
M. C. Nichols ◽  
...  

AbstractFollowing the evolving microstructure of composites through all stages of chemical vapor infiltration (CVI) is a key to improved understanding and control of the process. X-ray Tomographic Microscopy (XTM), i.e., very high resolution computed tomography, allows the microstructure of macroscopic volumes of a composite to be imaged nondestructively with resolution approaching one micrometer. Results obtained with XTM on dense SiC/SiC composites and on woven SiC fiber preforms illustrate how details of the densification process can be followed using this technique during interruptions in processing. Ways in which the three-dimensional microstructural information may be used to improve modeling are also indicated.


2009 ◽  
Vol 24 (5) ◽  
pp. 939-942 ◽  
Author(s):  
Zhi-Xin MENG ◽  
Lai-Fei CHENG ◽  
Li-Tong ZHANG ◽  
Yong-Dong XU ◽  
Xiu-Feng HAN

2018 ◽  
Vol 44 (18) ◽  
pp. 22529-22537
Author(s):  
Yue Li ◽  
Zhaoke Chen ◽  
Ruiqian Zhang ◽  
Zongbei He ◽  
Haoran Wang ◽  
...  

2001 ◽  
Vol 318 (1-2) ◽  
pp. 183-188 ◽  
Author(s):  
Yongdong Xu ◽  
Laifei Cheng ◽  
Litong Zhang ◽  
Hongfeng Yin ◽  
Xiaowei Yin

Sign in / Sign up

Export Citation Format

Share Document