scholarly journals Pressure-Pulsed Chemical Vapor Infiltration of SiC to Three-Dimensional Carbon Fiber/SiC Preform Prepared by Polymer Impregnation and Pyrolysis.

2002 ◽  
Vol 110 (1277) ◽  
pp. 44-50 ◽  
Author(s):  
Kazutaka SUZUKI ◽  
Shoichi KUME ◽  
Kikuo NAKANO ◽  
Yoshinori KANNO
Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2723
Author(s):  
Chong Ye ◽  
Dong Huang ◽  
Baoliu Li ◽  
Pingjun Yang ◽  
Jinshui Liu ◽  
...  

This study is focused on a novel high-thermal-conductive C/C composite used in heat-redistribution thermal protection systems. The 3D mesophase pitch-based carbon fiber (CFMP) preform was prepared using CFMP in the X (Y) direction and polyacrylonitrile carbon fiber (CFPAN) in the Z direction. After the preform was densified by chemical vapor infiltration (CVI) and polymer infiltration and pyrolysis (PIP), the 3D high-thermal-conductive C/C (CMP/C) composite was obtained. The prepared CMP/C composite has higher thermal conduction in the X and Y directions. After an ablation test, the CFPAN becomes needle-shaped, while the CFMP shows a wedge shape. The fiber/matrix and matrix/matrix interfaces are preferentially oxidized and damaged during ablation. After being coated by SiC coating, the thermal conductivity plays a significant role in decreasing the hot-side temperature and protecting the SiC coating from erosion by flame. The SiC-coated CMP/C composite has better ablation resistance than the SiC-coated CPAN/C composite. The mass ablation rate of the sample is 0.19 mg·(cm−2·s−1), and the linear ablation rate is 0.52 μm·s−1.


2006 ◽  
Vol 11-12 ◽  
pp. 81-84 ◽  
Author(s):  
Dong Lin Zhao ◽  
Hong Feng Yin ◽  
Fa Luo ◽  
Wan Cheng Zhou

Three dimensional textile carbon fiber reinforced silicon carbide (3D textile C/SiC) composites with pyrolytic carbon interfacial layer were fabricated by chemical vapor infiltration. The microstructure and mechanical property of 3D textile C/SiC composites were investigated. A thin pyrolysis carbon layer (0.2 ± μm) was firstly deposited on the surface of carbon fiber as the interfacial layer with C3H6 at 850°C and 0.1 MPa. Methyltrichlorosilane (CH3SiCl3 or MTS) was used for the deposition of the silicon carbide matrix. The conditions used for SiC deposition were 1100°C, a hydrogen to MTS ratio of 10 and a pressure of 0.1 MPa. The density of the composites was 2.1 g cm-3. The flexural strength of the 3D textile C/SiC composites was 438 MPa. The 3D textile C/SiC composites with pyrolytic carbon interfacial layer exhibit good mechanical properties and a typical failure behavior involving fibers pull-out and brittle fracture of sub-bundle. The real part (ε′) and imaginary part (ε″) of the complex permittivity of the 3D-C/SiC composites are 51.53-52.44 and 41.18-42.08 respectively in the frequency range from 8.2 to 12.4 GHz. The 3D-C/SiC composites would be a good candidate for microwave absorber.


Sign in / Sign up

Export Citation Format

Share Document