Adaptive Fiber-Optical Sensor System for Pico-Strain and Nano-Displacement Metrology

2008 ◽  
Vol 381-382 ◽  
pp. 61-64
Author(s):  
Roman V. Romashko ◽  
Yuri Kulchin ◽  
S.D. Girolamo ◽  
A. Kamshilin ◽  
J.C. Launay

Adaptive fiber-optic interferometer which is based on multimode optical fiber as a sensor and diffusion holograms recorded in semiconductor photorefractive crystal CdTe:V without any electric field is developed. The interferometer sensitivity achieved is only 5.7 times less then highest sensitivity which is possible only in non-adaptive lossless classical interferometer. A practical detection limit is equal to Hz W nm 10 0 3 5 − × . , which allows to broadband detecting of an object’s displacement of order 0.2 nm or deformation of order 2 pε with using light sources having only 5 mW optical power.

2019 ◽  
Vol 11 (1) ◽  
pp. 16 ◽  
Author(s):  
Joanna Korec ◽  
Karol Antoni Stasiewicz ◽  
Leszek Roman Jaroszewicz

This paper presents the influence of temperature on optical power spectrum propagated in a tapered optical fiber with twisted nematic liquid crystal cladding (TOF-TNLCC) modulated by an electric field. The measurements were performed for a liquid crystal cell with the twisted orientation of ITO layers, filled with E7 mixture. The induced reorientation of liquid crystal (LC) n-director was measured for visible and near-infrared wavelength range [550-1100 nm] at the electric field range of 0–160 V and temperature range of 20-60 °C. The relation between temperature and the optical power spectrum of the investigated device has been established. Full Text: PDF ReferencesV.J. Tekippe, "Passive fiber optic components made by the fused biconical taper process", Proc. SPIE 1085 (1990). CrossRef T. A. Birks, Y. W. Li, The shape of fiber tapers, Journal of Lightwave Technology 10, 4 (1992). CrossRef J. Korec, K. A. Stasiewicz, O. Strzeżysz, P. Kula, L. R. Jaroszewicz, Electro-Steering Tapered Fiber-Optic Device with Liquid Crystal Cladding, Journal of Sensors 2019: 1-11 (2019) CrossRef Ch. Veilleux, J. Lapierre, J. Bures, Liquid-crystal-clad tapered fibers, Opt. Lett. 11, 733-735 (1986) CrossRef J. F Henninot, D. Louvergneaux, N. Tabiryan, M. Warenghem, Controlled leakage of a tapered optical fiber with liquid crystal cladding, Molecular Crystals and Liquid Crystals, 282, 297-308. (1996). CrossRef Y. Wang, et.al., Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application, Opt. Express 25, 918-926 (2017) CrossRef J. Korec, K. A. Stasiewicz, O. Strzeżysz, P. Kula, L. R. Jaroszewicz, . E. Moś, Tapered fibre liquid crystal optical device, Proc. SPIE 10681 (2018) CrossRef G. Assanto, A. Picardi, R. Barboza, A. Alberucci, Electro-optic steering of Nematicons, Phot. Lett. Poland 4, 1 (2012). CrossRef A.Ghanadzadeh Gilani, M.S. Beevers, The Electro-optical kerr effect in eutectic nematic mixtures of E7 and E8,J ournal of Molecular Liquids, 92, 3 (2001). CrossRef E. C. Mägi, P. Steinvurzel, and B.J. Eggleton, Tapered photonic crystal fibers, Opt. Express 784, 12, 5 (2004). CrossRef Y. Li and J. Lit, Transmission properties of a multimode optical-fiber taper, J. Opt. Soc. Am. A 2, (1985). CrossRef J. Korec, K. A. Stasiewicz, and L. R. Jaroszewicz, Temperature influence on optical power spectrum of the tapered fiber device with a liquid crystal cladding, Proc. SPIE 11045, 110450I (2019) CrossRef L.M. Blinov, Liquid crystals: physical properties and their possibilities in application, Advances in Liquid Crystal Research and Applications, (1981). CrossRef


1995 ◽  
Author(s):  
Beatrys M. Lacquet ◽  
Pieter L. Swart ◽  
Stephanus J. Spammer

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1190
Author(s):  
Anjali Thomas ◽  
Souradip Paul ◽  
Joy Mitra ◽  
Mayanglambam Suheshkumar Singh

Use of portable and affordable pulse light sources (light emitting diodes (LED) and laser diodes) for tissue illumination offers an opportunity to accelerate the clinical translation of photoacoustic imaging (PAI) technology. However, imaging depth in this case is limited because of low output (optical) power of these light sources. In this work, we developed a noninvasive technique for enhancing strength (amplitude) of photoacoustic (PA) signal. This is a photothermal-based technique in which a continuous wave (CW) optical beam, in addition to short-pulse ~ nsec laser beam, is employed to irradiate and, thus, raise the temperature of sample material selectively over a pre-specified region of interest (we call the process as pre-illumination). The increase in temperature, in turn enhances the PA-signal strength. Experiments were conducted in methylene blue, which is one of the commonly used contrast agents in laboratory research studies, to validate change in temperature and subsequent enhancement of PA-signal strength for the following cases: (1) concentration or optical absorption coefficient of sample, (2) optical power of CW-optical beam, and (3) time duration of pre-illumination. A theoretical hypothesis, being validated by numerical simulation, is presented. To validate the proposed technique for clinical and/or pre-clinical applications (diagnosis and treatments of cancer, pressure ulcers, and minimally invasive procedures including vascular access and fetal surgery), experiments were conducted in tissue-mimicking Agar phantom and ex-vivo animal tissue (chicken breast). Results demonstrate that pre-illumination significantly enhances PA-signal strength (up to ~70% (methylene blue), ~48% (Agar phantom), and ~40% (chicken tissue)). The proposed technique addresses one of the primary challenges in the clinical translation of LED-based PAI systems (more specifically, to obtain a detectable PA-signal from deep-seated tissue targets).


2006 ◽  
Vol 27 (7) ◽  
pp. 1312-1321 ◽  
Author(s):  
Bingquan Li ◽  
Xiaohua Fang ◽  
Haobin Luo ◽  
Eric Petersen ◽  
Young-Soo Seo ◽  
...  

2014 ◽  
Author(s):  
Ying Shang ◽  
Xiao-Hui Liu ◽  
Chang Wang ◽  
Wen-an Zhao

Sign in / Sign up

Export Citation Format

Share Document