chicken tissue
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 11)

H-INDEX

18
(FIVE YEARS 1)

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1383
Author(s):  
Emily H. Davis ◽  
Jill K. Thompson ◽  
Steven G. Widen ◽  
Alan D. T. Barrett

The yellow fever virus vaccine, 17D, was derived through the serial passage of the wild-type (WT) strain Asibi virus in mouse and chicken tissue. Since its derivation, the mechanism of attenuation of 17D virus has been investigated using three 17D substrains and WT Asibi virus. Although all three substrains of 17D have been sequenced, only one isolate of Asibi has been examined genetically and all interpretation of attenuation is based on this one isolate. Here, we sequenced the genome of Asibi virus from three different laboratories and show that the WT strain is genetically homogenous at the amino acids that distinguish Asibi from 17D vaccine virus.


Author(s):  
Hasan Idil ◽  
Turgay Yilmaz Kilic

Abstract Objectives: Central venous catheter (CVC) placement is an important procedure which is frequently performed in the emergency department (ED) and can cause serious complications. The aim of this study is to introduce a simulation-based tissue model for ultrasound (US)-guided central venous access practices and to compare the effectiveness of static and dynamic US techniques through this model. Methods: This was a prospective study on US-guided CVC placement techniques simulated with a chicken tissue model. This model is based on the principle of placing two cylindrical balloons filled with colored water (red for arterial and blue for venous) between a raw chicken breast and wrapping the formed structure with plastic wrap. The study was conducted in an academic tertiary care hospital with Emergency Medicine (EM) residents who have received basic US training, including vascular access procedures. All participants performed simulated CVC placement procedures with both static and dynamic US techniques. At the end of the study, the practitioners were asked to rate usefulness of these techniques between one and ten (one was the lowest and ten was the highest score). Results: A total of 32 EM residents were included in the study. Their median age was 29 (IQR = 27 - 31) years and 72% of them were male. Their median duration in ED was 19 (IQR = 12 - 34) months. According to the results of simulated CVC placement procedures, there was no significant difference between the static and dynamic US techniques in terms of puncture numbers, procedure durations, and success rates. However, according to the usefulness scores given by the practitioners, the dynamic US technique was found to be more useful (P < .001). Conclusions: The chicken tissue model is a convenient tool for simulating US-guided CVC placement procedures. The dynamic US technique is considered to be more useful in this field than the static technique, but the results of practitioner-dependent practices may not always support this generalization.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1190
Author(s):  
Anjali Thomas ◽  
Souradip Paul ◽  
Joy Mitra ◽  
Mayanglambam Suheshkumar Singh

Use of portable and affordable pulse light sources (light emitting diodes (LED) and laser diodes) for tissue illumination offers an opportunity to accelerate the clinical translation of photoacoustic imaging (PAI) technology. However, imaging depth in this case is limited because of low output (optical) power of these light sources. In this work, we developed a noninvasive technique for enhancing strength (amplitude) of photoacoustic (PA) signal. This is a photothermal-based technique in which a continuous wave (CW) optical beam, in addition to short-pulse ~ nsec laser beam, is employed to irradiate and, thus, raise the temperature of sample material selectively over a pre-specified region of interest (we call the process as pre-illumination). The increase in temperature, in turn enhances the PA-signal strength. Experiments were conducted in methylene blue, which is one of the commonly used contrast agents in laboratory research studies, to validate change in temperature and subsequent enhancement of PA-signal strength for the following cases: (1) concentration or optical absorption coefficient of sample, (2) optical power of CW-optical beam, and (3) time duration of pre-illumination. A theoretical hypothesis, being validated by numerical simulation, is presented. To validate the proposed technique for clinical and/or pre-clinical applications (diagnosis and treatments of cancer, pressure ulcers, and minimally invasive procedures including vascular access and fetal surgery), experiments were conducted in tissue-mimicking Agar phantom and ex-vivo animal tissue (chicken breast). Results demonstrate that pre-illumination significantly enhances PA-signal strength (up to ~70% (methylene blue), ~48% (Agar phantom), and ~40% (chicken tissue)). The proposed technique addresses one of the primary challenges in the clinical translation of LED-based PAI systems (more specifically, to obtain a detectable PA-signal from deep-seated tissue targets).


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245350
Author(s):  
Ayan Barbora ◽  
Oryan Bohar ◽  
Ariel Alexander Sivan ◽  
Eyal Magory ◽  
Ariel Nause ◽  
...  

Background The clinical efficiency of laser treatments is limited by the low penetration of visible light used in certain procedures like photodynamic therapy (PDT). Second Harmonic Generation (SHG) PDT is an innovative technique to overcome this limitation that enables the use of Near Infrared (NIR) light instead of visible light. NIR frequency bands present an optical window for deeper penetration into biological tissue. In this research, we compare the penetration depths of 405 and 808 nm continuous wave (CW) lasers and 808 nm pulsed wave (PW) laser in two different modes (high and low frequency). Methods Increasing thicknesses of beef and chicken tissue samples were irradiated under CW and PW lasers to determine penetration depths. Results The 808 nm CW laser penetrates 2.3 and 2.4 times deeper than the 405 nm CW laser in beef and chicken samples, respectively. 808 nm PW (pulse frequency—500 Hz) penetrates deeper than CW laser at the same wavelength. Further, increasing the pulse frequency achieves higher penetration depths. High frequency 808 nm PW (pulse frequency—71.4 MHz) penetrates 7.4- and 6.0-times deeper than 405 nm CW laser in chicken and beef, respectively. Conclusions The results demonstrate the higher penetration depths of high frequency PW laser compared to low frequency PW laser, CW laser of the same wavelength and CW laser with half the wavelength. The results indicate that integrating SHG in the PDT process along with pulsed NIR light may allow the treatment of 6–7 times bigger tumours than conventional PDT using blue light.


2020 ◽  
pp. 98-106
Author(s):  
Mariya Pleskacheva ◽  
Marina Artamonova ◽  
Elena Litvinova ◽  
Mariia Gergel ◽  
Ekaterina Davydova

Introduction. The problem of food adulteration is highly relevant today. Food manufacturers are increasingly replacing expensive raw materials with cheaper poultry. We aimed to develop an effective method for identification and quantification of chicken meat and egg products in multicomponent meat systems using real-time PCR. Study objects and methods. We studied native animal tissue, namely that of chicken, pork, beef, turkey, quail, duck, horse meat, rabbit, sheep, and goat. Standard samples were taken from pure fresh chicken muscle tissue. We also used raw, boiled, and powdered chicken eggs. For a semiquantitative analysis of chicken mass in the sample, we compared the threshold cycle (Ct) of chicken DNA and the threshold cycles of calibration samples. To ensure the absence of PCR inhibition, we used an internal control sample which went through all the stages of analysis, starting with DNA extraction. Results and discussion. We developed a methodology to qualitatively determine the content of chicken tissue in the product and distinguish between the presence of egg products and contamination on the production line. The method for chicken DNA identification showed 100% specificity. This genetic material was detected in the range of 0.1% to 0.01% of chicken meat in the sample. The efficiency of the duplex PCR system for chicken DNA detection was more than 95% (3.38 on the Green slope channel and 3.45 on the Yellow slope channel). The analytical sensitivity of the primers was 40 copies/reaction. Conclusion. Our methodology is suitable for analyzing multicomponent food products, raw materials, feed, and feed additives. It can identify the content of chicken meat at a concentration of up to 1%, as well as distinguish egg impurities from contamination of various origin. PCR allows differentiation between chicken meat and egg products.


2020 ◽  
Vol 12 (25) ◽  
pp. 3210-3217
Author(s):  
Jie Liu ◽  
Shanshan Song ◽  
Aihong Wu ◽  
Xiaoling Wu ◽  
Jing Xiao ◽  
...  

Dinitolmide is a nitro amide coccidiostat used in poultry feed, and is a potential threat to the environment and human health.


2020 ◽  
Vol 103 (1) ◽  
pp. 83-88 ◽  
Author(s):  
Eirini Baira ◽  
Ioanna Dagla ◽  
Eleni Siapi ◽  
Panagiotis Zoumpoulakis ◽  
Anthony Tsarbopoulos ◽  
...  

Abstract Background: The dietary supplementation of livestock with antioxidants to improve the meat quality represents an active research area of high commercial impact. In order to investigate the optimal dosing, analytical methodologies need to be developed in various tissues to evaluate which concentration does remain in the tissue. Objective: We aimed to develop and validate a sensitive and specific methodology for the simultaneous quantitative determination of hesperidin, naringin, hesperetin, and naringenin in chicken tissue samples employing ultra-performance LC–tandem MS. Methods: Lipid extraction using cold chloroform was performed followed by protein precipitation by cold acetone. Chromatography was performed on a C18 column using a ternary gradient of water, acetonitrile, and isopropanol–acetonitrile–acetone (58+40+2, v/v) as the mobile phase. Detection was performed by electrospray ionization in negative ion mode with the selected reaction monitoring technique. Results: Calibration plots exhibited good linearity (r2 &gt; 0.99) over the concentration range from 0.125 to 25 μg/g tissue for the four analytes, and the lower LOQ for the four analytes was 0.125 μg/g tissue. The repeatability as percent relative SD and precision as percent accuracy were &lt;20 and &gt;80%, respectively. Conclusions: The developed methodology was applied for the quantitative determination of hesperidin, naringin, hesperetin, and naringenin in tissue samples after dietary supplementation with 1.5 g/kg hesperidin and 1.5 g/kg naringin in Ross 308 broiler chickens. Highlights: This is the first methodology to access naringin, naringenin, hesperidin, and hesperetin in chicken tissue. It involved simple sample preparation, and the mass spectrometry based detection ensures high specificity and sensitivity.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2652 ◽  
Author(s):  
Lan Chen ◽  
Bo Wang ◽  
Zhixiang Diao ◽  
Min Zhao ◽  
Kaizhou Xie ◽  
...  

A method for the simultaneous analysis of amoxicillin (AMO), amoxicillin metabolites, and ampicillin residues in edible chicken muscle, liver, and kidney samples via high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI/MS/MS) was developed and verified. The extraction and purification procedures involved the extraction of the sample using a liquid-liquid extraction method with acetonitrile to eliminate the proteins. The chicken tissue extract was then injected directly onto an HPLC column coupled to a mass spectrometer with an ESI(+) source. The HPLC-ESI/MS/MS method was validated according to specificity, sensitivity, linearity, matrix effects, precision, accuracy, decision limit, detection capability, and stability, as defined by the European Union and Food and Drug Administration. The linearity was desirable, and the determination coefficients (r2 values) ranged from 0.9968 and 0.9999. The limits of detection and limits of quantification were 0.10–2.20 μg/kg and 0.30–8.50 μg/kg, respectively. The decision limits were 57.71–61.25 μg/kg, and the detection capabilities were 65.41–72.50 μg/kg, and the recoveries of the four target analytes exceeded 75% at the limits of quantification and exceeded 83% at 25, 50, and 100 μg/kg (n = 6 at each level), confirming the reliability of this method for determining these analytes and providing a new detection technology. For real sample analysis, this experiment tested 30 chicken tissue samples, only one chicken muscle, liver, and kidney sample were contaminated with 5.20, 17.45, and 7.33 μg/kg of AMO values, respectively, while other target compounds were not detected in the 30 tested chicken tissue samples.


Sign in / Sign up

Export Citation Format

Share Document