Study on the Abrasive Effecting Factors of the Removal Rate during Dual-Lapping Sapphire Wafer

2009 ◽  
Vol 407-408 ◽  
pp. 550-554 ◽  
Author(s):  
Ke Hua Zhang ◽  
Dong Hui Wen ◽  
Ju Long Yuan

Dual-lapping was a process to planarize the surface of the sapphire wafer, the nature of surface&subsurface damage and the surface uniformity was depended on the material removal mode and materials removal ratio. Material removal mode was studied in this paper, and the model of material removal was set up too. The SEM was used to scan the processed sapphire surface and the different removal style (two body and three body) were discovered. This research provided valuable insights into the material removal ratio and the dependence of lapping-induced damage on dual-lapping conditions, the asymmetry of abrasive granularity brought on the different materials removal mode and the surface asymmetry. The model was set up to qualitative analysis the material removal ratio in dual-lapping of sapphire, obtain the reasonable MMR and optimize the surface quality and the planarization result.

2014 ◽  
Vol 1027 ◽  
pp. 68-71 ◽  
Author(s):  
Jian Bin Wang ◽  
Yong Wei Zhu ◽  
Jun Xu ◽  
Zhan Kui Wang ◽  
Ji Hua Miao

The processing technology of sapphire with a high material removal rate a good surface quality is critical for its applications. The experiment of sapphire lapping and polishing was carried out by using three different fixed abrasive pad (FAP). Their material removal rate (MRR) and surface roughness (Ra) were measured and analyzed. Results indicate that a MRR of 5.6μm/min reaches in rough lapping and a MRR of 0.4μm/min in fine lapping. The average surface roughness Ra of rough lapping and fine lapping is 142nm and 1.2nm respectively. The processing efficiency of sapphire wafer is effectively improved and a good surface quality is obtained when FAP adopted.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5231
Author(s):  
Evandro Paese ◽  
Martin Geier ◽  
Fabiano R. Rodrigues ◽  
Tadeusz Mikolajczyk ◽  
Mozammel Mia

In this study, an experimental and statistic investigation approach based on analysis of variance (ANOVA) and response surface methodology (RSM) techniques was performed to find the significant main effects and two-factor interaction effects and to determine how the controllable factors such as cutting speed, feed rate, depth of cut (DOC), tool nose radius, substrate and coating method of cutting tools influence surface quality in turning of AISI 1045 steel. The first optimal or near-optimal conditions for the quality of the generated surface and the second ones, including maximum material removal rate, were established using the proposed regression equations. The group mean roughness of the turned workpieces was lower from using chemical vapor deposition (CVD)-coated carbide inserts than the group means of other types of inserts; however they could not achieve the specific lowest roughness. The physical vapor deposition (PVD)-coated carbide and cermet inserts achieved the best surface quality when the specific combinations within the range interval of controllable factors were used in the experiment, showing that they may be applied to finish turning processes or even to particular high material removal rate conditions associated with the lowest roughness.


2006 ◽  
Vol 304-305 ◽  
pp. 555-559 ◽  
Author(s):  
Chang He Li ◽  
Guang Qi Cai ◽  
Shi Chao Xiu ◽  
Q. Li

The material removal rate (MRR) model was investigated in abrasive jet precision finishing (AJPF) with wheel as restraint. When abrasive wore and workpiece surface micro-protrusion removed, the size ratio for characteristic particle size to minimum film thickness gradually diminishing, the abrasive machining from two-body lapping to three-body polishing transition in AJPF with grinding wheel as restraint. In the study, the material removal rate model was established according to machining mechanisms and machining modes from two-body to three-body process transition condition, and active number of particles in grinding zone were calculated and simulated. Experiments were performed in the plane grinder for material removal mechanism and academic models verification. It can be observed from experimental results that the surface morphology change dramatically to a grooved or micro-machined surface with all the grooves aligned in the sliding direction in two-body lapping mode. On the other hand, the surface is very different, consists of a random machining pits with very little sign of any directionality to the deformation in the three-body machining mode. Furthermore, the material removal rate model was found to give a good description of the experimental results.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2871
Author(s):  
Qiuling Wen ◽  
Xinyu Wei ◽  
Feng Jiang ◽  
Jing Lu ◽  
Xipeng Xu

Sapphire substrates with different crystal orientations are widely used in optoelectronic applications. In this work, focused ion beam (FIB) milling of single-crystal sapphire with A-, C-, and M-orientations was performed. The material removal rate (MRR) and surface roughness (Sa) of sapphire with the three crystal orientations after FIB etching were derived. The experimental results show that: The MRR of A-plane sapphire is slightly higher than that of C-plane and M-plane sapphires; the Sa of A-plane sapphire after FIB treatment is the smallest among the three different crystal orientations. These results imply that A-plane sapphire allows easier material removal during FIB milling compared with C-plane and M-plane sapphires. Moreover, the surface quality of A-plane sapphire after FIB milling is better than that of C-plane and M-plane sapphires. The theoretical calculation results show that the removal energy of aluminum ions and oxygen ions per square nanometer on the outermost surface of A-plane sapphire is the smallest. This also implies that material is more easily removed from the surface of A-plane sapphire than the surface of C-plane and M-plane sapphires by FIB milling. In addition, it is also found that higher MRR leads to lower Sa and better surface quality of sapphire for FIB etching.


2010 ◽  
Vol 42 ◽  
pp. 170-174
Author(s):  
Cheng Guang Zhang ◽  
Xue Ling Yang ◽  
Bo Zhao

The experiment of ultrasonic assisted pulse electrochemical compound finishing is carried in this paper. The machining principle of the compound finishing is discussed in this paper. Processing experiments of compound finishing are carried out to study the effects of the main processing para- meters, including the particle size, the ultrasonic vibration amplitude, the minimum gap between the tool head and workpiece and the pulse voltage, on the material removal rate and the surface quality for hard and brittle metal materials. The curves of the corresponding relationships are also obtained. The study indicates that the processing velocity, machining accuracy and surface quality can be improved under the compound finishing, obtaining the processing technology conductions of the compound finishing. Introductions


2018 ◽  
Vol 764 ◽  
pp. 106-114
Author(s):  
Jian Bin Wang ◽  
Zhen Li ◽  
Yong Wei Zhu ◽  
Ben Chi Jiang ◽  
Pei Cheng Shi

The choice of abrasive particle size is crucial to improve the lapping efficiency and surface quality in lapping of sapphire wafer by fixed abrasive (FA) pad. A model for the penetration depth of a single abrasive is developed with fixed abrasive pad. A serious of lapping tests were carried out using FA pads embedded with different size of diamond particles to verify the validity of the developed model. Results show that the penetration depth of abrasive is related not only to the particle size, but to the hardness ratio of the work-piece to the pad as well. The material removal rate of sapphire is proportional to the square of abrasive particle size, while the average surface roughness is proportional to the abrasive particle size.


2009 ◽  
Vol 69-70 ◽  
pp. 113-117
Author(s):  
Qian Fa Deng ◽  
Dong Hui Wen ◽  
Feng Chen ◽  
Li Tao ◽  
Ju Long Yuan

To obtain high surface quality and high finishing efficiency in machining SUS440 stainless steel, a novel machining technology employing a semi-fixed abrasive plate (SFAP) is adopted. The SFAP is developed for preventing lapped surface from damage caused by larger particles (from grain size dispersion or from outside of processing area, larger particles could bring uneven load distribution on processing region). The effects of different parameters on the surface quality and the material removal rate (MRR) of SUS440 stainless steel which is lapped by SFAP are investigated in this paper. The control parameters of the lapping process include the lapping time, the load, the rotating speed of the lapping plate, and etc. SFAP of 800# SiC abrasive used, Experimental results indicate that SFAP can avoid the large scratch effectively and the surface roughness (Ra) of the workpiece could be improved from 250 nm to 50 nm in 12 Min. A nearly mirror-like surface can be obtained.


Sign in / Sign up

Export Citation Format

Share Document