Effect of Ultrasonic Vibration of Tool on Electrical Discharge Machining of Sintered NdFeB Magnet

2009 ◽  
Vol 407-408 ◽  
pp. 628-631
Author(s):  
Li Li ◽  
Zong Wei Niu ◽  
Guang Ming Yuan

Sintered NdFeB magnet is widely used in many areas because of its excellent magnet. This paper studies the effect of ultrasonic vibration of tool on electrical discharge machining of it. Experiments were carried out on self-made equipment and material removal rate(MRR) against pulse-on time, MRR versus peak current and machined surface results with and without ultrasonic employment were analyzed. Results show that MRR of the ultrasonic assisted electro-discharge machining would be up to five times higher than MRR of the conventional EDM for small pulse durations and low discharge currents. The machined surface of US/EDM is finer than EDM because of less arcing and short circuit pulses. There are less cracks on the surface.

Author(s):  
R Rajeswari ◽  
MS Shunmugam

Electrical discharge machining is used in the machining of complicated shapes in hardened molds and dies. In rough die-sinking stage, attempts are made to enhance material removal rate with a consequential reduction in cycle time. Powder mix and ultrasonic assistance are employed in the electrical discharge machining process to create gap conditions favoring material removal. In the present work, experiments are carried out on hardened D3 die steel using full-factorial design based on three levels of voltage, current and pulse on time. The gap phenomena in graphite powder-mixed and ultrasonic-assisted rough electrical discharge machining are studied using a detailed analysis of pulse shapes and their characteristic trains. Two new parameters, namely, energy expended over a second ( E) and performance factor ( PF) denoting the ratio of energy associated with sparks to total discharge energy, bring out gap conditions effectively. In comparison with the conventional electrical discharge machining for the selected condition, it is seen that the graphite powder mixed in the dielectric enhances the material removal rate by 20.8% with E of 215 J and PF of 0.227, while these values are 179.8 J and 0.076 for ultrasonic-assisted electrical discharge machining with marginal reduction of 3.9%. Cross-sectional images of workpieces also reveal the influence of electrical discharge machining conditions on the machined surface. The proposed approach can be extended to different powder mix and ultrasonic conditions to identify condition favoring higher material removal.


2009 ◽  
Vol 620-622 ◽  
pp. 711-714 ◽  
Author(s):  
Li Li ◽  
Guang Ming Yuan ◽  
Zong Wei Niu ◽  
Rong Guo Hou

Sintered NdFeB permanent magnet is widely used in many areas because of its excellent magnet property. In this study, the machining parameters of electrical discharge machining (EDM) are varied to study the effects of electrical discharge energy on material removal rate and surface roughness of NdFeB magnet. Moreover, the micro-cracks on the machined surface induced by EDM are also examined. The experimental results reveal that the MRR increases with the electrical discharge energy. The number of surface cracks on the machined surface increases with the enhancement of discharge energy Thus, using EDM process to machine sintered NdFeB magnet depends on setting the machining parameters to prevent surface crack.


Author(s):  
Saman Fattahi ◽  
Hamid Baseri

Dry electrical discharge machining (EDM) is a modification of the oil EDM process in which the liquid dielectric is replaced by a gaseous dielectric. This study investigates the effects of different types of gas (air, nitrogen, and mixture of argon/air) on the machining characteristics of dry EDM of M35 workpiece material. A Taguchi L27 orthogonal array design was applied to investigate the effects of six control factors, including current, pulse on-time, duty factor, gas pressure, electrode rotational speed and specifically type of gas on machining responses, including material removal rate (MRR), surface roughness, and radial overcut. Also, the surface integrity was investigated in different dielectric mediums. Results show that the argon/air mixture can improve the MRR with respect to air and nitrogen. The best dimensional accuracy can be obtained by using nitrogen as the dielectric medium. Also, the machined surface with nitrogen has the fewest small drops and the microcracks in Aagon/air mixture is more than those air one. So, the argon/air mixture is the best dielectric with respect to nitrogen and air mediums for dry EDM of high-speed steel M35.


2020 ◽  
Vol 16 (6) ◽  
pp. 1385-1394
Author(s):  
Mahendra Uttam Gaikwad ◽  
A. Krishnamoorthy ◽  
Vijaykumar S. Jatti

PurposeElectrical discharge machining (EDM) of hard materials like NiTi 60 alloys is important as it finds application in different sectors of engineering such as automobile, aircraft, biomedical, oil industries, etc.Design/methodology/approachThe first target of this investigation is to determine the effect of process parameters such as current, voltage, pulse on time and pulse off time on the material removal rate (MRR), surface roughness (SR) and white layer formation (WLT) for NiTi 60 smart material alloy. The secondary aim is to identify the presence of surface integrity parameters such as cracks, WLT, microvoids, globules and debris formation by using the scanning electron microscopy technique and with the use of ImageJ software for die sink EDM machining of NiTi 60 alloy.FindingsThe results reveal that current is significant for MRR, voltage and current influence SR, and for WLT, voltage is a significant factor. The experimentation study also shows the generation of oxide and carbide layers on the machined surface, which were evident with the use of the X-ray diffraction technique. The presence of these oxide and carbide layers causes to form WLT on the machined surface and thereby increases the hardness of the machined surface.Originality/valueHardness test was performed with Vickers hardness tester, which gives evidence for the increase in hardness of machined surface due to the generation of WLT.


2012 ◽  
Vol 503-504 ◽  
pp. 27-30
Author(s):  
Li Li ◽  
Zong Wei Niu ◽  
Feng Shi Yin ◽  
Yuan Yong Liu

In this study, the machining parameters of electrical discharge machining (EDM) are varied to study the effects of electrical discharge energy on material removal rate and surface roughness of NdFeB magnet. Moreover, the micro-cracks on the machined surface induced by EDM are also examined. The experimental results reveal that the MRR increases with the electrical discharge energy. The surface cracks on the machined surface are more serious when the discharge energy is higher. Thus, using EDM process to machine sintered NdFeB magnet depends on setting the machining parameters to prevent surface crack.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


Author(s):  
Balbir Singh ◽  
Jatinder Kumar ◽  
Sudhir Kumar

This paper presents the experimental investigation on the electro-discharge machining of aluminum alloy 6061 reinforced with SiC particles using sintered Cu–W electrode. Experiments have been designed as per central composite rotatable design, using response surface methodology. Machining characteristics such as material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR) have been investigated under the influence of four electrical process parameters; namely peak current, pulse on time, pulse off time, and gap voltage. The process parameters have been optimized to obtain optimal combination of MRR, EWR, and SR. Further, the influence of sintered Cu–W electrode on surface characteristics has been analyzed with scanning electron microscopy, energy dispersive spectroscopy, and Vicker microhardness tests. The results revealed that all the process parameters significantly affect MRR, EWR, and SR. The machined surface properties are modified as a result of material transfer from the electrode. The recast layer thickness is increased at higher setting of electrical parameters. The hardness across the machined surface is also increased by the use of sintered Cu–W electrode.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


Manufacturing ◽  
2003 ◽  
Author(s):  
Scott F. Miller ◽  
Albert J. Shih

The development of new, advanced engineering materials and the needs for precise and flexible prototype and low-volume production have made wire electrical discharge machining (EDM) an important manufacturing process to meet such demand. This research investigates the effect of spark on-time duration and spark on-time ratio, two important EDM process parameters, on the material removal rate (MRR) and surface integrity of four types of advanced material: porous metal foams, metal bond diamond grinding wheels, sintered Nd-Fe-B magnets, and carbon-carbon bipolar plates. An experimental procedure was developed. During the wire EDM, five types of constraints on the MRR due to short circuit, wire breakage, machine slide speed limit, and spark on-time upper and lower limits have been identified. An envelope of feasible EDM process parameters is created and compared across different work-materials. Applications of such process envelope to select process parameters for maximum MRR and for machining of micro features are presented.


2020 ◽  
Vol 10 (1) ◽  
pp. 401-407
Author(s):  
Yanuar Rohmat Aji Pradana ◽  
Aldi Ferara ◽  
Aminnudin Aminnudin ◽  
Wahono Wahono ◽  
Jason Shian-Ching Jang

AbstractThe machinability information of Zr-based bulk metallic glasses (BMGs) are recently limited but essential to provide technological recommendation for the fabrication of the medical devices due to the material’s metastable nature. This study aims to investigate the material removal rate (MRR) and surface roughness under different current and pulse-on time of newly developed Ni- and Cu-free Zr-based BMG using sinking-electrical discharge machining (EDM). By using weightloss calculation, surface roughness test and scanning electron microscopy (SEM) observation on the workpiece after machining, both MRR and surface roughness were obtained to be increased up to 0.594 mm3/min and 5.50 μm, respectively, when the higher current was applied. On the other hand, the longer pulse-on time shifted the Ra into the higher value but lower the MRR value to only 0.183 mm3/min at 150 μs. Contrary, the surface hardness value was enhanced by both higher current and pulse-on time applied during machining indicating different level of structural change after high-temperature spark exposure on the BMG surface. These phenomena are strongly related to the surface evaporation which characterize the formation of crater and recast layer in various thicknesses and morphologies as well as the crystallization under the different discharge energy and exposure time.


Sign in / Sign up

Export Citation Format

Share Document