Fault Diagnostics Based on Pattern Spectrum Entropy and Proximal Support Vector Machine

2009 ◽  
Vol 413-414 ◽  
pp. 607-612 ◽  
Author(s):  
Xiang Tao Yu ◽  
Wen Xiu Lu ◽  
Fu Lei Chu

Based on pattern spectrum entropy and proximal support vector machine (PSVM), a motor rolling bearing fault diagnosis method is proposed in this paper. It is very difficult to filter the fault vibration signals from the strong noise background because the roller bearing fault diagnosis is a problem of multi-class classification of inner ring fault, outer ring fault and ball fault. Firstly, vibration signals are processed by the pattern spectrum. Secondly, the morphological pattern spectrum entropy, and pattern spectrum values are utilized to identify the fault features of input parameters of PSVM classifiers. The experiment results demonstrate that the pattern spectrum quantifies various aspects of the shape-size content of a signal, and PSVM costs a little time and has better efficiency than the standard SVM.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
HungLinh Ao ◽  
Junsheng Cheng ◽  
Kenli Li ◽  
Tung Khac Truong

This study investigates a novel method for roller bearing fault diagnosis based on local characteristic-scale decomposition (LCD) energy entropy, together with a support vector machine designed using an Artificial Chemical Reaction Optimisation Algorithm, referred to as an ACROA-SVM. First, the original acceleration vibration signals are decomposed into intrinsic scale components (ISCs). Second, the concept of LCD energy entropy is introduced. Third, the energy features extracted from a number of ISCs that contain the most dominant fault information serve as input vectors for the support vector machine classifier. Finally, the ACROA-SVM classifier is proposed to recognize the faulty roller bearing pattern. The analysis of roller bearing signals with inner-race and outer-race faults shows that the diagnostic approach based on the ACROA-SVM and using LCD to extract the energy levels of the various frequency bands as features can identify roller bearing fault patterns accurately and effectively. The proposed method is superior to approaches based on Empirical Mode Decomposition method and requires less time.


2015 ◽  
Vol 10 (4) ◽  
pp. 1558-1565 ◽  
Author(s):  
Don-Ha Hwang ◽  
Young-Woo Youn ◽  
Jong-Ho Sun ◽  
Kyeong-Ho Choi ◽  
Jong-Ho Lee ◽  
...  

2018 ◽  
Vol 8 (9) ◽  
pp. 1621 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Yong Ren ◽  
Gongbo Zhou ◽  
...  

Acceleration sensors are frequently applied to collect vibration signals for bearing fault diagnosis. To fully use these vibration signals of multi-sensors, this paper proposes a new approach to fuse multi-sensor information for bearing fault diagnosis by using ensemble empirical mode decomposition (EEMD), correlation coefficient analysis, and support vector machine (SVM). First, EEMD is applied to decompose the vibration signal into a set of intrinsic mode functions (IMFs), and a correlation coefficient ratio factor (CCRF) is defined to select sensitive IMFs to reconstruct new vibration signals for further feature fusion analysis. Second, an original feature space is constructed from the reconstructed signal. Afterwards, weights are assigned by correlation coefficients among the vibration signals of the considered multi-sensors, and the so-called fused features are extracted by the obtained weights and original feature space. Finally, a trained SVM is employed as the classifier for bearing fault diagnosis. The diagnosis results of the original vibration signals, the first IMF, the proposed reconstruction signal, and the proposed method are 73.33%, 74.17%, 95.83% and 100%, respectively. Therefore, the experiments show that the proposed method has the highest diagnostic accuracy, and it can be regarded as a new way to improve diagnosis results for bearings.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wei-Li Qin ◽  
Wen-Jin Zhang ◽  
Zhen-Ya Wang

Roller bearings are one of the most commonly used components in rotational machines. The fault diagnosis of roller bearings thus plays an important role in ensuring the safe functioning of the mechanical systems. However, in most cases of bearing fault diagnosis, there are limited number of labeled data to achieve a proper fault diagnosis. Therefore, exploiting unlabeled data plus few labeled data, this paper proposed a roller bearing fault diagnosis method based on tritraining to improve roller bearing diagnosis performance. To overcome the noise brought by wrong labeling into the classifiers training process, the cut edge weight confidence is introduced into the diagnosis framework. Besides a small trick called suspect principle is adopted to avoid overfitting problem. The proposed method is validated in two independent roller bearing fault experiment vibrational signals that both include three types of faults: inner-ring fault, outer-ring fault, and rolling element fault. The results demonstrate the desirable diagnostic performance improvement by the proposed method in the extreme situation where there is only limited number of labeled data.


Sign in / Sign up

Export Citation Format

Share Document