Particle Swarm vs. Evolutionary Optimization Techniques in a Multiobjective Framework for Damage Identification

2009 ◽  
Vol 413-414 ◽  
pp. 661-668
Author(s):  
Ricardo Perera ◽  
Sheng En Fang ◽  
Antonio Ruiz

In the context of real-world damage detection problems, the lack of a clear objective function advises to perform simultaneous optimizations of several objectives with the purpose of improving the performance of the procedure. Evolutionary algorithms have been considered to be particularly appropriate to these kinds of problems. However, evolutionary techniques require a relatively long time to obtain a Pareto front of high quality. Particle swarm optimization (PSO) is one of the newest techniques within the family of optimization algorithms. The PSO algorithm relies only on two simple PSO self-updating equations whose purpose is to try to emulate the best global individual found, as well as the best solutions found by each individual particle. Since an individual obtains useful information only from the local and global optimal individuals, it converges to the best solution quickly. PSO has become very popular because of its simplicity and convergence speed. However, there are many associated problems that require further study for extending PSO in solving multi-objective problems. The goal of this paper is to present the first application of PSO to multiobjective damage identification problems and investigate the applicability of several variations of the basic PSO technique. The potential of combining evolutionary computation and PSO concepts for damage identification problems is explored in this work by using a multiobjective evolutionary particle swarm optimization algorithm.

2021 ◽  
Vol 21 (1) ◽  
pp. 62-72
Author(s):  
R. B. Madhumala ◽  
Harshvardhan Tiwari ◽  
Verma C. Devaraj

Abstract Efficient resource allocation through Virtual machine placement in a cloud datacenter is an ever-growing demand. Different Virtual Machine optimization techniques are constructed for different optimization problems. Particle Swam Optimization (PSO) Algorithm is one of the optimization techniques to solve the multidimensional virtual machine placement problem. In the algorithm being proposed we use the combination of Modified First Fit Decreasing Algorithm (MFFD) with Particle Swarm Optimization Algorithm, used to solve the best Virtual Machine packing in active Physical Machines to reduce energy consumption; we first screen all Physical Machines for possible accommodation in each Physical Machine and then the Modified Particle Swam Optimization (MPSO) Algorithm is used to get the best fit solution.. In our paper, we discuss how to improve the efficiency of Particle Swarm Intelligence by adapting the efficient mechanism being proposed. The obtained result shows that the proposed algorithm provides an optimized solution compared to the existing algorithms.


2019 ◽  
Vol 39 (2) ◽  
pp. 393-415
Author(s):  
Olurotimi A Dahunsi ◽  
Muhammed Dangor ◽  
Jimoh O Pedro ◽  
M Montaz Ali

Resolving the trade-offs between suspension travel, ride comfort, road holding, vehicle handling and power consumption is the primary challenge in the design of active vehicle suspension system. Multi-loop proportional + integral + derivative controllers’ gains tuning with global and evolutionary optimization techniques is proposed to realize the best compromise between these conflicting criteria for a nonlinear full-car electrohydraulic active vehicle suspension system. Global and evolutionary optimization methods adopted include: controlled random search, differential evolution, particle swarm optimization, modified particle swarm optimization and modified controlled random search. The most improved performance was achieved with the differential evolution algorithm. The modified particle swarm optimization and modified controlled random search algorithms performed better than their predecessors, with modified controlled random search performing better than modified particle swarm optimization in all aspects of performance investigated both in time and frequency domain analyses.


Author(s):  
Mohamed M. Saada ◽  
Mustafa H. Arafa ◽  
Ashraf O. Nassef

The use of vibration-based techniques in damage identification has recently received considerable attention in many engineering disciplines. While various damage indicators have been proposed in the literature, those relying only on changes in the natural frequencies are quite appealing since these quantities can conveniently be acquired. Nevertheless, the use of natural frequencies in damage identification is faced with many obstacles, including insensitivity and non-uniqueness issues. The aim of this paper is to develop a viable damage identification scheme based only on changes in the natural frequencies and to attempt to overcome the challenges typically encountered. The proposed methodology relies on building a Finite Element Model (FEM) of the structure under investigation. A modified Particle Swarm Optimization (PSO) algorithm is proposed to facilitate updating the FEM in accordance with experimentally-determined natural frequencies in order to predict the damage location and extent. The method is tested on beam structures and was shown to be an effective tool for damage identification.


2020 ◽  
Vol 12 (7) ◽  
pp. 918-923
Author(s):  
Aditi Majumdar ◽  
Bharadwaj Nanda

Use of swarm intelligence has proliferated over previous couple of years for damage assessment in large and complex structures using vibration data. Available literatures shows ‘ant colony optimization’ (ACO) and ‘particle swarm optimization’ (PSO) are predominantly used for solving complex engineering problems including damage identification and quantification problems. The time requirement and accuracy of the vibration based damage identification algorithms depends on early exploration and late exploitation capabilities of soft computing techniques. However, there are not any literature available comparing algorithms on these bases. In the current study, an inverse problem is constructed using the natural frequency changes which is then solved using ACO and PSO algorithms. The algorithm is run for identification of single and multiple damages in simple support and cantilever beam structures. It's found that, both ACO and PSO based algorithms are capable of detecting and quantifying the damage accurately within the limited number of iterations. However, ACO based algorithm by virtue of its good exploration capability is able to identify near optimal region faster than PSO based algorithm, whereas PSO algorithm has good exploitation capability and hence able to provide better damage quantification than ACO algorithm at latter stages of iteration. Further, PSO based algorithm takes less time to reach at required accuracy level. It is also observed that, the time required for these algorithms are independent of numbers of damage and support conditions.


2017 ◽  
Vol 50 (1) ◽  
pp. 221-230 ◽  
Author(s):  
Małgorzata Rabiej

The analysis of wide-angle X-ray diffraction curves of semicrystalline polymers is connected with a thorough decomposition of these curves into crystalline peaks and amorphous components. A reliable and unambiguous decomposition is the most important step in calculation of the crystallinity of polymers. This work presents a new algorithm dedicated to this aim, which is based on the particle swarm optimization (PSO) method. The PSO method is one of the most effective optimization techniques that employs a random choice as a tool for going through the solution space and searching for the global solution. The action of the PSO algorithm imitates the behaviour of a bird flock or a fish school. In the system elaborated in this work the original PSO algorithm has been equipped with several heuristics. The role of heuristics is performed by procedures which orient the search of the solution space using additional information. In this paper it is shown that this algorithm is faster to converge and more efficiently performs a multi-criterial optimization compared with other algorithms used for this purpose to date.


2021 ◽  
Author(s):  
David

Particle swarm optimization (PSO) is a search algorithm based on stochastic and population-based adaptive optimization. In this paper, a pathfinding strategy is proposed to improve the efficiency of path planning for a broad range of applications. This study aims to investigate the effect of PSO parameters (numbers of particle, weight constant, particle constant, and global constant) on algorithm performance to give solution paths. Increasing the PSO parameters makes the swarm move faster to the target point but takes a long time to converge because of too many random movements, and vice versa. From a variety of simulations with different parameters, the PSO algorithm is proven to be able to provide a solution path in a space with obstacles.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hanbing Liu ◽  
Gang Song ◽  
Yubo Jiao ◽  
Peng Zhang ◽  
Xianqiang Wang

An approach to identify damage of bridge utilizing modal flexibility and neural network optimized by particle swarm optimization (PSO) is presented. The method consists of two stages; modal flexibility indices are applied to damage localizing and neural network optimized by PSO is used to identify the damage severity. Numerical simulation of simply supported bridge is presented to demonstrate feasibility of the proposed method, while comparative analysis with traditional BP network is for its superiority. The results indicate that curvature of flexibility changes can identify damages with both single and multiple locations. The optimization of bias and weight for neural network by fitness function of PSO algorithm can realize favorable damage severity identification and possesses more satisfactory accuracy than traditional BP network.


2014 ◽  
Vol 989-994 ◽  
pp. 1582-1585
Author(s):  
Li Xia Lv ◽  
Xiang Yu Lin

According to the question of the standard particle swarm optimization (PSO) algorithm is prone to premature and no convergence phenomenon, this paper proposed an algorithm of Inflection nonlinear global PSO. The algorithm introduces nonlinear trigonometric factor and the global average location information in the formula of velocity updating. It take advantage of the convex of the triangle function cause the particles early in the larger velocity search maintain long time and in the later searching with smaller speed maintain long time, use the global average position information make the population can use more information to update their position. The method are applied in optimizing in the parameters of the main steam temperature control system and furnace pressure control system for comparison, the results show that the method in the search speed and precision than standard PSO has significantly improved.


In power generating plants, the expenses on combustible fuel is extremely costly and the concept of ELD (Economic Load Dispatch) make possible to save the considerable portion of profits. Practically generators have economic dispatch problems in terms of non-convexity. These kinds of problem cannot be resolved by conventional optimization techniques because the complication escalates due to manifold constrained that require to be fulfilled in all operating conditions. Recently a Particle Swarm Optimization (PSO) algorithm stimulated by collective conduct of swarm can be applied effectively to translate the ELD problems. The classical PSO bears the difficulty of early convergence mainly when the space of search is asymmetrical. To overcome the trouble “Crazy PSO with TVAC (Time Varying Acceleration Coefficients)” is launched which improve the search ability of the PSO by rebooting the vector of velocity whenever diffusion or saturation locate inside and to employ a scheme of parameter automation to maintain correct equilibrium between global hunt and local hunt and also circumvent the congestion. This arrangement is developed crazy PSO with TVAC and also demonstrated on two different model experimental structures of three generation units and six generation units. The result acquired from proposed method is evaluate with classical PSO and Real coded genetic algorithm (RGA) and it is found to be superior. This method is mathematically simple, gives fast convergence and robustness to resolve the rigid optimization inconvenience.


2009 ◽  
Vol 16-19 ◽  
pp. 1228-1232 ◽  
Author(s):  
Hong Yu ◽  
Jia Peng Yu ◽  
Wen Lei Zhang

Assembly sequence planning (ASP) is the foundation of the assembly planning which plays a key role in the whole product life cycle. Although the ASP problem has been tackled via a variety of optimization techniques, the particle swarm optimization (PSO) algorithm is scarcely used. This paper presents a PSO algorithm to solve ASP problem. Unlike generic versions of particle swarm optimization, the algorithm redefines the particle's position and velocity, and operation of updating particle positions. In order to overcome the problem of premature convergence, a new study mechanism is adopted. The geometrical constraints, assembly stability and the changing times of assembly directions are used as the criteria for the fitness function. To validate the performance of the proposed algorithm, a 29-component product is tested by this algorithm. The experimental results indicate that the algorithm proposed in this paper is effective for the ASP.


Sign in / Sign up

Export Citation Format

Share Document