Study of Finishing Mechanism for Internal Surface Using Magnetic Force Generated by Rotating Magnetic Field

2009 ◽  
Vol 416 ◽  
pp. 406-410 ◽  
Author(s):  
Xin Gai Yao ◽  
Yan Hong Ding ◽  
Gang Ya ◽  
Wei Wei Liu ◽  
Yuan Zhang

In the paper, a new method of using rotating magnetic field generated by a stator of alternative electromotor to finish the inner surface of tube-type workpiece is proposed. Force and movements of magnetic abrasive are analyzed. The finishing mechanism is analyzed and the sliding, friction and scratching between magnetic abrasives and the workpiece inner surface may be main factors of material removal as the non-mechanical relative motion is produced.

2007 ◽  
Vol 359-360 ◽  
pp. 295-299
Author(s):  
Xin Gai Yao ◽  
Shi Ying Wang ◽  
Yan Hong Ding ◽  
Gang Ya ◽  
Jie Zhang

In the paper, a new method of using rotating magnetic field generated by a stator of alternative electromotor to polish the inner surface of tube-type workpieces is proposed; a finishing device using the stator construction and inverter is designed; the finishing mechanism is analyzed and experiments are carried out. Experimental investigations show that filling amount of magnetic abrasive influences the surface roughness of workpiece directly and have an optimal value. The higher magnetic conductivity is, and the finer finishing effect is. The attraction force of magnetic particles depends on intensity of magnetic induction directly and has the optimal value. The higher the rotation speed is, and the lower the value of surface roughness. Under the optimal experimental condition, the new method can reduce the value of surface roughness more than 2 grades. Therefore, this technique has prospective application future.


2019 ◽  
Vol 97 (3) ◽  
pp. 163-168 ◽  
Author(s):  
Priyanka Sharma ◽  
Srinivasu V. Vallabhapurapu ◽  
Wei H. Ho ◽  
Nanjundaswamy M. Hemmaragala

The novel reactor has been designed to perform chemical reactions under the influence of a magnetic field generated by alternating magnetic poles as a function of time. The system was successfully employed to synthesize a series of 1,5-disubstituted-1,2,3-triazolines via the regioselective [3 + 2] cycloaddition reactions between alkyl/aryl azides and nitroolefins catalysed by Zepto (para magnetic ultra-blue carboxy functionalized) microspheres (bead diameter 2.5 μm). All of the reactions went smoothly without any adverse effect on nitro, cyano, thienyl, hydroxy, halogens, and ether functions at 25 ± 2 °C and afforded 82%–99% pure products at a magnetic field of 18.99 mT and an exposure time of 180–240 min. The influence of the magnetic force exerted on the magnetic materials was found to enhance the catalytic activity of microspheres. The catalyst could easily be separated by simple centrifugation, which could be reused for at least 15 runs with no loss in activity.


2008 ◽  
Vol 53-54 ◽  
pp. 137-140
Author(s):  
Y. Chen ◽  
X. Wang ◽  
C.J. Zhang

It is very difficult matter that polishes the internal surface of the pipe, especially to the thin pipe with the traditional surface technology. Because a usual tool cannot into the inner surface of the thin pipe and automation do not achieved easily. This paper brings up a new method that utilize the characteristic of the magnetic force line may penetrate the non-magnetic material, may using the magnetic abrasive finishing (MAF) method complete to the inner surface of the thin pipe precise polishing. The magnetic abrasive finishing does not need special equipment to complete the complex shape internal surface polishing. Moreover, we already obtained the famous processing effect through the experiment. Meanwhile this paper analyses some factors of influences efficiency, and propose some solution method.


2020 ◽  
Vol 842 ◽  
pp. 272-278
Author(s):  
Xiao Qin Zhou ◽  
Bao Quan Sun ◽  
Hao Cheng Wang ◽  
Xiao Yang Wu ◽  
Hang Yu

In order to achieve the polishing of the inner wall of the workpiece with a complex internal cavity structure. In this paper, a planar polishing machine is used as an example to design a polishing device platform. The permanent magnet is used as a magnetic field to drive the polishing tool to polish the inner surface of the workpiece. In this paper, a magnetic field internal polishing analysis method is proposed, which mainly uses the matlab to qualitatively analyze the magnetic force and magnetic moment of the polishing tool, and then qualitatively analyze its motion stability.


2008 ◽  
Vol 373-374 ◽  
pp. 824-827 ◽  
Author(s):  
Y. Chen ◽  
F. Yan ◽  
C.Q. Zhu

Polishing the inner surface of slender pipe is very difficult. Because a usual tool cannot into the inner surface of the slender pipe, and automation do not achieved easily; the eye is unable to see, even if handmade is also very difficult. Utilize the characteristic of the magnetic force line may penetrate the non-magnetic material, may using the magnetic abrasive finishing (MAF) method complete to the inner surface of the slender pipe precise polishing is a preferable method and already obtained the good processing effect through the experiment. Therefore, this paper analysis and explanation the finishing principle and experiment device as well as collocation position of magnetic poles etc best experimental condition.


2010 ◽  
Vol 102-104 ◽  
pp. 634-638 ◽  
Author(s):  
Shi Ming Ji ◽  
Guo Da Chen ◽  
Ming Sheng Jin ◽  
Li Zhang

Magnetorheological flexible gasbag polishing based on the special application of magnetorheological fluid (MRF) in robotic gasbag polishing technique is a novel efficient approach in the field of mould finishing. It can control the polishing pressure by changing the magnetic force generated by MRF inside of the gasbag with the effect of variable magnetic field of electromagnetic coil. Its mathematical model is established to study the main factors influencing the material removal. The orthogonal tests are applied to analyze these important parameters. From the experimental results, it can be seen that this new approach is desirable in realizing the control of surface figure accuracy and improvement of surface quality under certain condition.


2007 ◽  
Vol 339 ◽  
pp. 106-113 ◽  
Author(s):  
Yan Hua Zou ◽  
Takeo Shinmura

This paper describes a new efficient internal finishing process for a thick tubing (10~30mm in thickness), by the application of a magnetic field-assisted machining process using a magnet tool. Because a stronger magnetic force can be generated than conventional magnetic abrasives, it makes the internal finishing of thick non-ferromagnetic tubing possible. Moreover, in order to obtain a high-quality surface, this process method was developed using magnetic particles magnetically attracted on the magnet surface. This paper characterizes the processing principle and advantages of this process. Then, the mechanism of this finishing process was examined by a plane model experiment. It was clarified that the magnetism and shape of a magnetic particle influence realization possibility of this processing method, and it also influence the finishing characteristics.


Sign in / Sign up

Export Citation Format

Share Document