bead diameter
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 19)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Harpreet Singh

<p>We present a new model for the fragmentation of dust beds in laboratory shock tube experiments. The model successfully explains the formation of layers in the bed using mass and momentum conservation. Our model includes the effect of wall friction, inherent cohesion, and gravitational overburden. We find that the pressure changes caused by the expansion wave take time to penetrate into the bed, while simultaneously increasing in magnitude. By the time the pressure difference is large enough to overcome wall friction, the overburden and the intrinsic cohesion of the bed, it has penetrated ~8-15 bead diameters into the bed, thus causing a layer of dust to be lifted off. We have found the dependence of layer size upon bead diameter and found a good match to experiment. We have also predicted the dependence of layer size and fragmentation time on bead density.</p>


2021 ◽  
Author(s):  
◽  
Harpreet Singh

<p>We present a new model for the fragmentation of dust beds in laboratory shock tube experiments. The model successfully explains the formation of layers in the bed using mass and momentum conservation. Our model includes the effect of wall friction, inherent cohesion, and gravitational overburden. We find that the pressure changes caused by the expansion wave take time to penetrate into the bed, while simultaneously increasing in magnitude. By the time the pressure difference is large enough to overcome wall friction, the overburden and the intrinsic cohesion of the bed, it has penetrated ~8-15 bead diameters into the bed, thus causing a layer of dust to be lifted off. We have found the dependence of layer size upon bead diameter and found a good match to experiment. We have also predicted the dependence of layer size and fragmentation time on bead density.</p>


2021 ◽  
Vol 26 (4) ◽  
pp. 2825-2833
Author(s):  
UCHENNA OYEAGU ◽  
CHARLES NWUCHE ◽  
CHRISTIAN OGBONNA ◽  
JAMES OGBONNA

Microporous calcium alginate gel beads were investigated as potential solutions to mass transfer limitations in immobilized cultures. The beads were prepared by gelling mixtures of sodium alginate and fillers (starch or granulated sugars) in calcium chloride solution. The resulting beads were cured in the same solution, during which the fillers leached out of the beads thereby creating micro-pores in the beads (microporous beads). The effectiveness of the microporous beads in improving amylase production by Aspergillus niger LC 269109 was investigated. Spores of A. niger were immobilized in the microporous beads and used for batch alpha amylase and gluco amylase production. Amylase production by the A. niger immobilized in the microporous beads were significantly higher (p<0.01) than the values obtained with the conventional calcium alginate gel beads. Under all the conditions investigated, gluco-amylase activities were significantly (p<0.01) higher than the alpha-amylase activities. Under the optimum conditions of inoculum concentration (1.0 × 105 spores/ml), pH (6), temperature (35°C), bead diameter (3 mm) and calcium chloride concentration (1.5%), the gluco-amylase and alpha amylase activities were 11.98 U/ml and 6.7 U/ml respectively, which were significantly higher (p<0.05) than the 7.8 U/ml and 3.2 U/ml obtained with the conventional gel beads.


Author(s):  
Kathrin Schrinner ◽  
Marcel Schrader ◽  
Jana Niebusch ◽  
Kristin Althof ◽  
Friederike Schwarzer ◽  
...  

The actinomycete Lentzea aerocolonigenes produces the antitumor antibiotic rebeccamycin. In previous studies the rebeccamycin production was significantly increased by the addition of glass beads during cultivation in different diameters between 0.5 – 2 mm and the induced mechanical stress by the glass beads was proposed to be responsible for the increased production. Thus, this study was conducted to be a systematic investigation of different parameters for macroparticle addition, such as bead diameter, concentration and density (glass and ceramic) as well as shaking frequency, for a better understanding of the particle induced stress on L. aerocolonigenes. The induced stress for optimal rebeccamycin production can be estimated by a combination of stress energy and stress frequency. In addition, the macroparticle-enhanced cultivation of L. aerocolonigenes was combined with soy lecithin addition to further increase the rebeccamycin concentration. With 100 g L glass beads in a diameter of 969 µm and 5 g L soy lecithin a concentration of 388 mg L 1 rebeccamycin was reached after 10 days of cultivation, which corresponds to the highest rebeccamycin concentrations achieved in shake flask cultivations of L. aerocolonigenes stated in literature so far.


2021 ◽  
pp. 088391152098830
Author(s):  
Andrew Baldwin ◽  
Lisa Uy ◽  
Brian W Booth

Breast cancer is the most commonly diagnosed cancer among women worldwide. Surgical removal of tumors is often necessary and many patients suffer complications due to subsequent breast reconstruction. A safe and effective breast reconstructive material is needed for patients recovering from surgical removal of small breast cancer tumors. Our lab has developed injectable collagen/tannic acid beads seeded with patient-derived preadipocytes for regeneration of healthy breast tissue in patients post-lumpectomy. Previous research indicates that the inclusion of tannic acid in the matrix imparts an anticancer property. This research seeks to determine the variables needed to control collagen/tannic acid bead diameter and seeded cell attachment, which are essential to proper bead implantation and function. We found that as tannic acid concentration increases within the beads, cell attachment decreases. Bead diameter is controlled by bead generator voltage, solution osmolality, the degree of cell attachment, and tannic acid concentrations. Higher voltages resulted in significant decrease in bead diameter. Collagen/tannic acid beads decreased in diameter when placed in solutions of increasing osmolality. Higher degrees of cell attachment across the surface of the beads were associated with a significant decrease in diameter. In beads made with high concentrations of tannic acid, bead diameter was found to decrease. Collagen/TA beads are a promising subdermal tissue regenerative matrix with anticancer activity as an alternative to simple lipofilling in breast reconstructive procedures. This study was conducted to better understand the properties of collagen/TA beads in order to improve injection efficacy and tissue regenerative activity.


2021 ◽  
Vol 333 ◽  
pp. 02015
Author(s):  
Takahiro Tamura ◽  
Mitsumasa Kimata

Effect of grinding factor and scaling up were carried out by grinding using horizontal dry bead mill. For the experiments, 2 sizes of horizontal dry bead mills with different capacities, lab and manufacturing scale, were used to study scaling up and down. The grinding experiments were performed by changing each typical grinding factor for bead mills, including the agitator peripheral speed, bead packing density, bead diameter, and material feeding speed. This set of experiments was conducted for 3 kinds of materials, silica sand of natural inorganic materials, alumina of synthetic inorganic materials, and activated carbon of organic materials. As a result, common for all materials, similar rules were found between the particle size and specific energy, the amount of mechanical energy per unit amount of material. In addition, these rules were applicable for the different-size mills, indicating that the scale can be controlled by the rules and specific energy. Also, it is revealed that when using a single type of material, changing the bead diameter changes the energy efficiency, indicating that using small-diameter bead was effective for efficient grinding.


2021 ◽  
Vol 24 ◽  
Author(s):  
Shu Xian Chean ◽  
Pei Ying Hoh ◽  
Yu Hsuan How ◽  
Kar Lin Nyam ◽  
Liew Phing Pui

Abstract This study aimed to evaluate the survivability of Lactiplantibacillus plantarum 299v encapsulated in chitosan-coated calcium alginate beads with inulin as prebiotic in simulated gastrointestinal conditions and roselle juice. The concentration of calcium chloride and inulin for L. plantarum 299v microencapsulation was optimised and the survivability of free and microencapsulated L. plantarum was assessed under simulated gastrointestinal conditions. Storage stability of the optimised encapsulated L. plantarum 299v-inulin was determined throughout four (4) weeks of storage in roselle juice at 4 °C and 25 °C. The optimized formula for L. plantarum 299v was 2.0% (w/v) of calcium chloride and 3.0% (w/v) of inulin. Optimized calcium alginate-chitosan L. plantarum 299v microbeads with inulin did not affect (p > 0.05) the bead diameter, with a mean diameter of 685.27 μm, and microencapsulation efficiency of 95%. Encapsulated L. plantarum 299v with inulin showed higher survivability (>107 CFU/mL) than free cells and encapsulated L. plantarum 299v without inulin under simulated gastrointestinal conditions and after four (4) weeks of storage in roselle juice at 4 °C. The results indicate that co-extrusion encapsulation and addition of inulin had improved the viability of L. plantarum 299v in roselle juice by protecting probiotic against unfavourable gastrointestinal conditions and prolonged storage.


2021 ◽  
Vol 249 ◽  
pp. 08008
Author(s):  
Abbas Farhat ◽  
Li-Hua Luu ◽  
Pierre Philippe ◽  
Pablo Cuéllar

We experimentally investigated cohesion of artificially bonded granular materials made of spherical glass beads cemented by solid paraffin bonds. By means of laboratory tests designed and carried out for investigation at different scales, we measured the tensile yield strength for solid bonds both at the inter-particle micro-scale and cemented samples at the meso-scale. A parametric study has been performed by varying some of the granular material properties (bead diameter, paraffin content as well as the dimension of the sample for the meso-scale tensile tests. We finally propose a discusion on: (i) the relationship between the microscopic and macroscopic cohesion forces relying on classical homogenisation laws ; (ii) the potential impact of size effects based on a simple phenomenological model.


2020 ◽  
Vol 57 (12) ◽  
pp. 627-632
Author(s):  
Takahiro Tamura ◽  
Tsuyoshi Ishikawa ◽  
Mitsumasa Kimata
Keyword(s):  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 969
Author(s):  
Andreas Ouranidis ◽  
Nikos Gkampelis ◽  
Elisavet Vardaka ◽  
Anna Karagianni ◽  
Dimitrios Tsiptsios ◽  
...  

Wet media milling, coupled with spay drying, is a commonly proposed formulation strategy for the production and solidification of nanosuspensions in order to overcome the solubility barrier of BCS Class II substances. However, the application of mechanically and thermally intensive processes is not straightforward in the cases of ductile and/or low melting point substances that may additionally be susceptible to eutectic formation. Using ibuprofen (IBU) as a model drug with non-favorable mechanical and melting properties, we attempt to rationalize nanocrystal formulation and manufacturing in an integrated approach by implementing Quality by Design (QbD) methodology, particle informatics techniques and computationally assisted process design. Wet media milling was performed in the presence of different stabilizers and co-milling agents, and the nanosuspensions were solidified by spray-drying. The effects of key process parameters (bead diameter, milling time and rotational speed) and formulation variables (stabilizer type and drug/stabilizer ratio) on the critical quality attributes (CQAs), i.e., Z-average size, polydispersity index (PDI), ζ-potential and redispersibility of spray-dried nanosuspensions were evaluated, while possible correlations between IBU free surface energy and stabilizer effectiveness were studied. The fracture mechanism and surface stabilization of IBU were investigated by computer simulation of the molecular interactions at the crystal lattice level. As a further step, process design accounting for mass-energy balances and predictive thermodynamic models were constructed to scale-up and optimize the design space. Contemplating several limitations, our multilevel approach offers insights on the mechanistic pathway applicable to the substances featuring thermosensitivity and eutectic tendency.


Sign in / Sign up

Export Citation Format

Share Document