Modeling and Experimental Study of Magnetorheological Flexible Gasbag Polishing

2010 ◽  
Vol 102-104 ◽  
pp. 634-638 ◽  
Author(s):  
Shi Ming Ji ◽  
Guo Da Chen ◽  
Ming Sheng Jin ◽  
Li Zhang

Magnetorheological flexible gasbag polishing based on the special application of magnetorheological fluid (MRF) in robotic gasbag polishing technique is a novel efficient approach in the field of mould finishing. It can control the polishing pressure by changing the magnetic force generated by MRF inside of the gasbag with the effect of variable magnetic field of electromagnetic coil. Its mathematical model is established to study the main factors influencing the material removal. The orthogonal tests are applied to analyze these important parameters. From the experimental results, it can be seen that this new approach is desirable in realizing the control of surface figure accuracy and improvement of surface quality under certain condition.

2009 ◽  
Vol 416 ◽  
pp. 406-410 ◽  
Author(s):  
Xin Gai Yao ◽  
Yan Hong Ding ◽  
Gang Ya ◽  
Wei Wei Liu ◽  
Yuan Zhang

In the paper, a new method of using rotating magnetic field generated by a stator of alternative electromotor to finish the inner surface of tube-type workpiece is proposed. Force and movements of magnetic abrasive are analyzed. The finishing mechanism is analyzed and the sliding, friction and scratching between magnetic abrasives and the workpiece inner surface may be main factors of material removal as the non-mechanical relative motion is produced.


2006 ◽  
Vol 532-533 ◽  
pp. 133-136
Author(s):  
Gui Wen Kang ◽  
Fei Hu Zhang

Magnetorheological finishing (MRF) is a novel precision optical machining technology. MRF utilizes magnetic particles, nonmagnetic polishing abrasives in carrier fluid, and a magnetic field to finish optical materials. Owing to its flexible finishing process, MRF eliminates subsurface damage, corrects surface figure errors and the finishing process can be easily controlled by computer. To achieve deterministic finishing, it’s necessary to know the mechanism of material removal. Different magnetorheological fluids are used to finish optical glass on the same machining condition. The material removal and surface quality are examined after finishing with no polishing abrasive, aluminium oxide and cerium oxide. The results show that the hardness of polishing abrasive is not the main factors to affect material removal.


2021 ◽  
Author(s):  
Yury Belousov ◽  
Roberto Grimaudo ◽  
Antonino Messina ◽  
Agostino Migliore ◽  
Alessandro Sergi

2007 ◽  
Vol 359-360 ◽  
pp. 384-388
Author(s):  
Feng Jun Chen ◽  
Shao Hui Yin ◽  
Jian Wu Yu ◽  
Hitoshi Ohmori ◽  
Wei Min Lin ◽  
...  

According to the sharp rheological characteristics of magnetorheological fluid in the magnetic field, the principle and mechanism of magnetorheological finishing is analyzed. Based on the Preston equation, the Reynolds equation and its boundary conditions, the two-dimensional material removal model is built and simulated. Furthermore, a series of MRF experiments are carried out, and the influence of the immersed depth and material kinds on material removal rate are clarified respectively. The experimental results are compared with the modeling results of material removal rate to confirm the mechanistic model validity.


2018 ◽  
Vol 32 (7) ◽  
pp. 3345-3350 ◽  
Author(s):  
Byung Chan Kim ◽  
Jae Hwa Chung ◽  
Myeong Woo Cho ◽  
Seok Jae Ha ◽  
Gil-Sang Yoon

Nanoscale ◽  
2018 ◽  
Vol 10 (35) ◽  
pp. 16881-16886 ◽  
Author(s):  
Volker Neu ◽  
Silvia Vock ◽  
Tina Sturm ◽  
Ludwig Schultz

MFM tips nanofabricated from epitaxial SmCo5 films possess unprecedented magnetic hardness for improved performance in external fields and quantitative analysis.


Author(s):  
Jhy-Cherng Tsai

Polishing, in particular chemical-mechanical polishing (CMP), is a critical technology for the planarization of wafers. This paper investigates, via experiments, and compares the performance of CMP process with different process parameters for wafers with silicon-dioxide (SiO2) layer and for wafers with copper (Cu) layer. Polishing pressure (P), speed (V), and back pressure (BP) are used as process parameters in this study. Different pads and slurries are also experimented for copper layer as its properties are different from that of conventional oxide layer. Material removal rate (RR) and non-uniformity (NU) are used as indices to measure the performance. Experimental data on oxide layers show RR increases as P and V increase but NU gets worse at the same time. This condition can be improved, for both oxide and copper layers, with suitable BP. Experiments on copper CMP using slurry with abrasives show that RR increases with higher P and V. While NU gets worse with higher P, it can be reduced as V increases using a soft pad. Better NU can be obtained using soft pad though RR is lower in this case. For abrasive-free polishing of copper layer, RR, though relatively lower compared to CMP with regular slurry, is unstable using hard pad despite that NU becomes better at higher P. NU of polished wafer is best at certain pressure but becomes worse at low pressure for hard pad and at high P for soft pad. It is also observed that NU of AFP can be improved with BP and softer pad. Soft pad gives better polishing quality and performance though RR is lower than that using slurry with abrasives.


2020 ◽  
Vol 53 ◽  
pp. 144-152 ◽  
Author(s):  
Defeng Liao ◽  
Feihu Zhang ◽  
Ruiqing Xie ◽  
Shijie Zhao ◽  
Jian Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document