Study on the Distribution of Residual Stresses for Nondestructive Marking by Laser Shock Wave

2010 ◽  
Vol 426-427 ◽  
pp. 454-457
Author(s):  
Jin Zhon Lu ◽  
Kai Yu Luo ◽  
P.P. Yuan ◽  
Su Min Yin ◽  
Yong Kang Zhang

The marking system by laser shock wave (LSW) based on liquid crystal mask, which differs entirely from marking by laser ablation (or laser thermal effect), was established. Two-dimension (2D) nondestructive markings based on liquid crystal mask were prepared by LSW, and the distribution of residual stresses in laser-shocked region was measured and analyzed. The results showed that tensile residual stresses of sample surface were converted into compressive residual stresses by LSW, which is a nondestructive marking for aviation key parts.

2006 ◽  
Vol 532-533 ◽  
pp. 600-603
Author(s):  
Jin Zhon Lu ◽  
Yong Kang Zhang ◽  
De Jun Kong ◽  
Su Min Yin ◽  
Jian Zhong Zhou ◽  
...  

The theoretical researches on fabrication, measurement and identification of laser marking system of 3D(three-dimension) anti-counterfeiting identifiers have been done in this paper. 3D identifiers were fabricated and 3D identifiers’ modelings were reconstructed, and binary coding of gray images were encoded by programmable control of liquid crystal mask, spatial modulating of laser beam and photolithography fabrication technics. We regarded the depth of 3D identifiers as anti-counterfeiting information, and the original marking data and anti-counterfeiting information are saved in remote database server by database technology and computer network technology,so true produces can be distinguished from fake through network. The basic theory of 3D nondestructive anti-counterfeiting identifiers based on liquid crystal mask was built, and a new technology of creating 3D anti-counterfeiting identifiers by laser shock wave was set up, which differs entirely from marking by laser ablation (or laser thermal effect). A new high-efficiency theory of detecting and identifying on 3D anti-counterfeiting identifiers by 3D identifiers’ reconstruction and binary coding was set up. The study enriches dynamic plastic deformation theory of partial high-strain-rate and anti-counterfeiting design & manufacturing theory which is also a highlight based on advanced manufacturing theory of mechanical effect on laser shock wave.


2020 ◽  
Vol 1556 ◽  
pp. 012004
Author(s):  
S I Anisimov ◽  
N A Inogamov ◽  
V A Khokhlov ◽  
Yu V Petrov ◽  
V V Zhakhovsky

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 182
Author(s):  
Suvi Santa-aho ◽  
Mika Kiviluoma ◽  
Tuomas Jokiaho ◽  
Tejas Gundgire ◽  
Mari Honkanen ◽  
...  

Additive manufacturing (AM) is a relatively new manufacturing method that can produce complex geometries and optimized shapes with less process steps. In addition to distinct microstructural features, residual stresses and their formation are also inherent to AM components. AM components require several post-processing steps before they are ready for use. To change the traditional manufacturing method to AM, comprehensive characterization is needed to verify the suitability of AM components. On very demanding corrosion atmospheres, the question is does AM lower or eliminate the risk of stress corrosion cracking (SCC) compared to welded 316L components? This work concentrates on post-processing and its influence on the microstructure and surface and subsurface residual stresses. The shot peening (SP) post-processing levelled out the residual stress differences, producing compressive residual stresses of more than −400 MPa in the AM samples and the effect exceeded an over 100 µm layer below the surface. Post-processing caused grain refinement and low-angle boundary formation on the sample surface layer and silicon carbide (SiC) residue adhesion, which should be taken into account when using the components. Immersion tests with four-point-bending in the heated 80 °C magnesium chloride solution for SCC showed no difference between AM and reference samples even after a 674 h immersion.


2019 ◽  
Vol 25 (5) ◽  
pp. 257-262 ◽  
Author(s):  
Jin-Su Kim ◽  
Ahmed A. Busnaina ◽  
Jin-Goo Park

2006 ◽  
Vol 1 (4) ◽  
pp. 448-451 ◽  
Author(s):  
Chao-jun Yang ◽  
Yong-kang Zhang ◽  
Jian-zhong Zhou ◽  
Ming-xiong Ni ◽  
Jian-jun Du ◽  
...  

2021 ◽  
pp. 66-72
Author(s):  

The processes of laser-shock-wave processing of NiTi alloys with shape memory effect are investigated by the methods of dimensional analysis and finite element modeling. The dependences of the depth of the plastic zone on the peak pressure in the shock wave and the duration of the laser pulse are obtained at different peak pressures. Keywords: shape memory alloys, laser-shock-wave processing, dimensional analysis, residual stresses, plastic zone depth. [email protected]


2018 ◽  
Vol 167 ◽  
pp. 05007
Author(s):  
Aixin Feng ◽  
Yupeng Cao ◽  
Heng Wang ◽  
Zhengang Zhang

In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.


Sign in / Sign up

Export Citation Format

Share Document