Surface Roughness Model for Helical Milling of Die-Steel Based on Response Surface Methodology

2010 ◽  
Vol 431-432 ◽  
pp. 346-350 ◽  
Author(s):  
Xu Da Qin ◽  
Song Hua ◽  
Xiao Lai Ji ◽  
Shi Mao Chen ◽  
Wang Yang Ni

Holes making process is widely applied in die steel machining, Helical milling a hole, also called orbital drill, is hole making process by milling in which the center of end mill orbits around the center of the hole while spinning on its axis and moving in the axial direction. The paper presents the secondary regression prediction model of the holes surface roughness for helical milling of die-steel. To minimize the number of experiments for the design parameters, response surface methodology (RSM) with orthogonal rotatable central composite design is used. By means of variance analyses and additional cutting experiments, the adequacy of this model is confirmed. The model will be helpful in selecting cutting conditions to meet surface finish requirements in helical milling operation.

2010 ◽  
Vol 154-155 ◽  
pp. 626-633
Author(s):  
Moola Mohan Reddy ◽  
Alexander Gorin ◽  
Khaled A. Abou-El-Hossein

The present experimental study aimed to examine the selected machining parameters on Surface roughness in the machining of alumina nitride ceramic. The influence of cutting speed and feed rate were determined in end milling by using Cubic boron nitride grinding tool. The predictive surface roughness model has been developed by response surface methodology. The response surface contours with respect to input parameters are presented with the help of Design expert software. The adequacy of the model was tested by ANOVA.


2014 ◽  
Vol 548-549 ◽  
pp. 336-343
Author(s):  
Aishah Adam Siti ◽  
Yih Loong Yap

Milling is a common machining process with high cutting speed and material removal rate. High cutting speed tends to generate heat at the interface between tool and workpiece. This may reduce the surface quality of the workpiece and reduce the tool life. The application of conventional cutting fluid to reduce friction and heat between tool and workpiece may produce numerous environmental problems. The vegetable-based lubricant as an alternative for measuring the effect on surface quality during milling operation is studied. The relation between machining parameters such as spindle speed, feed rate, depth of cut and lubricants is analyzed by using Analysis of Variance (ANOVA) and Response Surface Methodology (RSM). The optimization of surface quality is analyzed by using Box-Behnken Design of RSM. The research focused on using sunflower oil as lubricant during machining process using mild steel solid block with TiCN coated HSS tools and using synthetic oil as comparison. Surface roughness for using sunflower oil as lubricant is 0.457 μm which lower compared to synthetic oil with 0.679 μm. Feed rate and spindle speed give the most significant effect to the surface roughness during milling operation. The application of vegetable-based oil as lubricant gives better surface quality, prevent tool wear and offer environmental advantages.


2012 ◽  
Vol 445 ◽  
pp. 90-95
Author(s):  
Hamed Barghikar ◽  
Amin Poursafar ◽  
Abbas Amrollahi

The surface roughness model in the turning of 34CrMo4 steel was developed in terms of cutting speed, feed rate and depth of cut and tool nose radius using response surface methodology. Machining tests were carried out using several tools with several tool radius under different cutting conditions. The roughness equations of cutting tools when machining the steels were achieved by using the experimental data. The results are presented in terms of mean values and confidence levels.The established equation and graphs show that the feed rate and cutting speed were found to be main influencing factor on the surface roughness. It increased with increasing the feed rate and depth of cut, but decreased with increasing the cutting speed, respectively. The variance analysis for the second-order model shows that the interaction terms and the square terms were statistically insignificant. However, it could be seen that the first-order affect of feed rate was significant while cutting speed and depth of cut was insignificant.The predicted surface roughness model of the samples was found to lie close to that of the experimentally observed ones with 95% confident intervals.


2017 ◽  
Vol 15 (3) ◽  
pp. 283-296 ◽  
Author(s):  
Aezhisai Vallavi Muthusamy Subramanian ◽  
Mohan Das Gandhi Nachimuthu ◽  
Velmurugan Cinnasamy

Sign in / Sign up

Export Citation Format

Share Document