Study the Effect of Vegetable-Based Lubricant on Surface Roughness during Milling Operation by Using Response Surface Methodology

2014 ◽  
Vol 548-549 ◽  
pp. 336-343
Author(s):  
Aishah Adam Siti ◽  
Yih Loong Yap

Milling is a common machining process with high cutting speed and material removal rate. High cutting speed tends to generate heat at the interface between tool and workpiece. This may reduce the surface quality of the workpiece and reduce the tool life. The application of conventional cutting fluid to reduce friction and heat between tool and workpiece may produce numerous environmental problems. The vegetable-based lubricant as an alternative for measuring the effect on surface quality during milling operation is studied. The relation between machining parameters such as spindle speed, feed rate, depth of cut and lubricants is analyzed by using Analysis of Variance (ANOVA) and Response Surface Methodology (RSM). The optimization of surface quality is analyzed by using Box-Behnken Design of RSM. The research focused on using sunflower oil as lubricant during machining process using mild steel solid block with TiCN coated HSS tools and using synthetic oil as comparison. Surface roughness for using sunflower oil as lubricant is 0.457 μm which lower compared to synthetic oil with 0.679 μm. Feed rate and spindle speed give the most significant effect to the surface roughness during milling operation. The application of vegetable-based oil as lubricant gives better surface quality, prevent tool wear and offer environmental advantages.

2018 ◽  
Vol 153 ◽  
pp. 05005
Author(s):  
Hani Mizhir ◽  
Kamil Jawad ◽  
Zuhair H Obaid

One of the important goals of this research is to predict a relationship between the process input parameters and resultants from surface roughness features through developing a laser cutting model. In most engineering applications, natural sciences and computing; statistical methods, which are one of mathematical branch are widely used for investigating the results. Laser cutting process of stainless steel (2205) is a machining process selected for this study. The technique which adopted here is a response surface methodology (RSM). The main portion for this study is the influence of cutting speed on surface quality. To study the model response, and for statistical approach with further prediction; a mathematical based model has been developed through regression analysis. It’s found that as one of the important results in this research, that cutting speed and surface roughness has a significant rule on the model response. To produce a good surface roughness, it’s approved that the high cutting speed connected with high power regardless of high pressure has a high influence on surface quality.


Author(s):  
Neelesh Ku. Sahu ◽  
A. B. Andhare

Surface roughness is an important surface integrity parameter for difficult to cut alloys such as Titanium alloys (Ti-6Al-4V). In the present work, initially a mathematical model is developed for predicting surface roughness for turning operation using Response Surface Methodology (RSM). Later, a recently developed advanced optimization algorithm named as Teaching Learning Based Optimization (TLBO) is used for further parameter optimization of the equation developed using RSM. The design of experiments was performed using central composite design (CCD). Analysis of variance (ANOVA) demonstrated the significant and non-significant parameters as well as validity of predicted model. RSM describes the effect of main and mixed (interaction) variables on the surface roughness of titanium alloys. RSM analysis over experimental results showed that surface roughness decreased as cutting speed increased whereas it increased with increase in feed rate. Depth of cut had no effect on surface roughness. By comparing the predicted and measured values of surface roughness the maximum error was found to be 7.447 %. It indicates that the developed model can be effectively used to predict the surface roughness. Further optimization of the roughness equation was carried out by TLBO method. It gave minimum surface roughness as 0.3120 μm at the cutting speed of 1704 RPM (171.217 m/min), feed rate of 55.6 mm/min (.033 mm/rev) and depth of cut of 0.7 mm. These results were confirmed by confirmation experiment and were better than that of RSM.


2016 ◽  
Vol 16 (2) ◽  
pp. 75-88 ◽  
Author(s):  
Munish Kumar Gupta ◽  
P. K. Sood ◽  
Vishal S. Sharma

AbstractIn the present work, an attempt has been made to establish the accurate surface roughness (Ra, Rq and Rz) prediction model using response surface methodology with Box–Cox transformation in turning of Titanium (Grade-II) under minimum quantity lubrication (MQL) conditions. This surface roughness model has been developed in terms of machining parameters such as cutting speed, feed rate and approach angle. Firstly, some experiments are designed and conducted to determine the optimal MQL parameters of lubricant flow rate, input pressure and compressed air flow rate. After analyzing the MQL parameter, the final experiments are performed with cubic boron nitride (CBN) tool to optimize the machining parameters for surface roughness values i. e., Ra, Rq and Rz using desirability analysis. The outcomes demonstrate that the feed rate is the most influencing factor in the surface roughness values as compared to cutting speed and approach angle. The predicted results are fairly close to experimental values and hence, the developed models using Box-Cox transformation can be used for prediction satisfactorily.


2014 ◽  
Vol 629 ◽  
pp. 487-492 ◽  
Author(s):  
Mohd Shahir Kasim ◽  
Che Hassan Che Haron ◽  
Jaharah Abd Ghani ◽  
E. Mohamad ◽  
Raja Izamshah ◽  
...  

This study was carried out to investigate how the high-speed milling of Inconel 718 using ball nose end mill could enhance the productivity and quality of the finish parts. The experimental work was carried out through Response Surface Methodology via Box-Behnken design. The effect of prominent milling parameters, namely cutting speed, feed rate, depth of cut (DOC), and width of cut (WOC) were studied to evaluate their effects on tool life, surface roughness and cutting force. In this study, the cutting speed, feed rate, DOC, and WOC were in the range of 100 - 140 m/min, 0.1 - 0.2 mm/tooth, 0.5 - 1.0 mm and 0.2 - 1.8 mm, respectively. In order to reduce the effect of heat generated during the high speed milling operation, minimum quantity lubrication of 50 ml/hr was used. The effect of input factors on the responds was identified by mean of ANOVA. The response of tool life, surface roughness and cutting force together with calculated material removal rate were then simultaneously optimized and further described by perturbation graph. Interaction between WOC with other factors was found to be the most dominating factor of all responds. The optimum cutting parameter which obtained the longest tool life of 60 mins, minimum surface roughness of 0.262 μm and resultant force of 221 N was at cutting speed of 100 m/min, feed rate of 0.15 mm/tooth, DOC 0.5 m and WOC 0.66 mm.


2011 ◽  
Vol 383-390 ◽  
pp. 7133-7137 ◽  
Author(s):  
Komson Jirapattarasilp ◽  
Sittichai Kaewkuekool ◽  
Worapong Phongphatrawut

The aim of this research was to study factors, which was influenced on surface roughness in vertical milling of hardened medium carbon steel. The specimen was medium carbon steel grade JIS S50C that was hardened at 56± 2 HRC. Full factorial experimental design was conducted by 3 factors and 3 levels (33 design) with 2 replications. Studied factors were consisted of cutting speed, feed rate, and air coolant pressure. The results revealed that influenced factor affected to surface roughness was cutting speed and feed rate which showed significantly different. Higher cutting speed would cause on better surface quality. On the other hand, poorer surface quality was produced by higher feed rate. However, factors interaction were found between cutting speed with air coolant pressure and feed rate with air coolant pressure that significantly influenced to surface roughness. The interaction of high cutting speed with high air coolant pressure would be better quality of surface finish and lower feed rate with high air coolant pressure would be better surface quality.


2018 ◽  
Vol 5 ◽  
pp. 5 ◽  
Author(s):  
Pralhad B. Patole ◽  
Vivek V. Kulkarni

This paper presents an investigation into the minimum quantity lubrication mode with nano fluid during turning of alloy steel AISI 4340 work piece material with the objective of experimental model in order to predict surface roughness and cutting force and analyze effect of process parameters on machinability. Full factorial design matrix was used for experimental plan. According to design of experiment surface roughness and cutting force were measured. The relationship between the response variables and the process parameters is determined through the response surface methodology, using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed. The values predicted from the model and experimental values are very close to each other.


2015 ◽  
Vol 761 ◽  
pp. 267-272
Author(s):  
Basim A. Khidhir ◽  
Ayad F. Shahab ◽  
Sadiq E. Abdullah ◽  
Barzan A. Saeed

Decreasing the effect of temperature, surface roughness and vibration amplitude during turning process will improve machinability. Mathematical model has been developed to predict responses of the surface roughness, temperature and vibration in relation to machining parameters such as the cutting speed, feed rate, and depth of cut. The Box-Behnken First order and second-order response surface methodology was employed to create a mathematical model, and the adequacy of the model was verified using analysis of variance. The experiments were conducted on aluminium 6061 by cemented carbide. The direct and interaction effect of the machining parameters with responses were analyzed. It was found that the feed rate, cutting speed, and depth of cut played a major role on the responses, such as the surface roughness and temperature when machining mild steel AISI 1018. This analysis helped to select the process parameters to improve machinability, which reduces cost and time of the turning process.


2012 ◽  
Vol 445 ◽  
pp. 90-95
Author(s):  
Hamed Barghikar ◽  
Amin Poursafar ◽  
Abbas Amrollahi

The surface roughness model in the turning of 34CrMo4 steel was developed in terms of cutting speed, feed rate and depth of cut and tool nose radius using response surface methodology. Machining tests were carried out using several tools with several tool radius under different cutting conditions. The roughness equations of cutting tools when machining the steels were achieved by using the experimental data. The results are presented in terms of mean values and confidence levels.The established equation and graphs show that the feed rate and cutting speed were found to be main influencing factor on the surface roughness. It increased with increasing the feed rate and depth of cut, but decreased with increasing the cutting speed, respectively. The variance analysis for the second-order model shows that the interaction terms and the square terms were statistically insignificant. However, it could be seen that the first-order affect of feed rate was significant while cutting speed and depth of cut was insignificant.The predicted surface roughness model of the samples was found to lie close to that of the experimentally observed ones with 95% confident intervals.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ekhaesomi A Agbonoga ◽  
Oyewole Adedipe ◽  
Uzoma G Okoro ◽  
Fidelis J Usman ◽  
Kafayat T Obanimomo ◽  
...  

This study investigated the effects of process parameters of plasma arc cutting (PAC) of low carbon steel material using analysis of variance. Three process parameters, cutting speed, cutting current and gas pressure were considered and experiments were conducted based on response surface methodology (RSM) via the box-Behnken approach. Process responses viz. surface roughness (Ra) and kerf width of cut surface were measured for each experimental run. Analysis of Variance (ANOVA) was performed to get the contribution of process parameters on responses. Cutting current has the most significant effect of 33.43% on the surface roughness and gas pressure has the most significant effect on  kerf width of  41.99% . For minimum surface roughness and minimum kerf width, process parameters were optimized using the RSM. Keywords: Cutting speed, cutting current, gas pressure,   surface roughness, kerf width


Author(s):  
Mahendran Samykano ◽  
J. Kananathan ◽  
K. Kadirgama ◽  
A. K. Amirruddin ◽  
D. Ramasamy ◽  
...  

The present research attempts to develop a hybrid coolant by mixing alumina nanoparticles with cellulose nanocrystal (CNC) into ethylene glycol-water (60:40) and investigate the viability of formulated hybrid nanocoolant (CNC-Al2O3-EG-Water) towards enhancing the machining behavior. The two-step method has been adapted to develop the hybrid nanocoolant at various volume concentrations (0.1, 0.5, and 0.9%). Results indicated a significant enhancement in thermal properties and tribological behaviour of the developed hybrid coolant. The thermal conductivity improved by 20-25% compared to the metal working fluid (MWF) with thermal conductivity of 0.55 W/m℃. Besides, a reduction in wear and friction coefficient was observed with the escalation in the nanoparticle concentration. The machining performance of the developed hybrid coolant was evaluated using Minimum Quantity Lubrication (MQL) in the turning of mild steel. A regression model was developed to assess the deviations in the tool flank wear and surface roughness in terms of feed, cutting speed, depth of the cut, and nanoparticle concentration using Response Surface Methodology (RSM). The mathematical modeling shows that cutting speed has the most significant impact on surface roughness and tool wear, followed by feed rate. The depth of cut does not affect surface roughness or tool wear. Surface roughness achieved 24% reduction, 39% enhancement in tool length of cut, and 33.33% improvement in tool life span. From this, the surface roughness was primarily affected by spindle cutting speed, feed rate, and then cutting depth while utilising either conventional water or composite nanofluid as a coolant. The developed hybrid coolant manifestly improved the machining behaviour.


Sign in / Sign up

Export Citation Format

Share Document