Cutting Edge Preparation by Means of Abrasive Brushing

2010 ◽  
Vol 438 ◽  
pp. 1-7 ◽  
Author(s):  
Berend Denkena ◽  
Luis de Leon ◽  
E. Bassett ◽  
M. Rehe

The need for new cutting tool technologies is driven by the constantly increasing performance of machine tools and the rising market competition. Current research results show that an improved combination of the cutting edge macro- and microgeometry, together with an appropriate substrate and coating, leads to a significant enhancement of cutting tool performance. Furthermore, inappropriate cutting edge microgeometries cause, in addition to the higher production costs, a reduction of the tool life. Hence, it is essential to produce tailored cutting edge microgeometries with high precision and process reliability. This paper presents the influence of brushing process parameters on the size and the form of produced cutting edges of indexable inserts. This leads to a better understanding and higher quality of the cutting edge preparation process by means of abrasive brushes. Furthermore, the process reliability of 5-axes brushing is analyzed. An example of a tool life map presents the significantly enhanced tool performance through cutting edge preparation and its sensitivity towards varying the cutting edge microgeometry.

2015 ◽  
Vol 105 (11-12) ◽  
pp. 805-811
Author(s):  
E. Uhlmann ◽  
D. Oberschmidt ◽  
A. Löwenstein ◽  
M. Polte ◽  
I. Winker

Die Prozesssicherheit beim Mikrofräsen lässt sich mit einer gezielten Schneidkantenverrundung erheblich steigern. Dabei werden durch verschiedene Präparationstechnologien unterschiedliche Geometrien und Einflüsse auf den Fräsprozess erzeugt. Der Fachbeitrag behandelt den Einsatz präparierter Mikrowerkzeuge in Zerspanversuchen, in denen auf die Zerspankräfte, den Verschleiß sowie die Oberflächengüten eingegangen wird.   Process reliability in micro milling can be increased by a defined cutting edge preparation. Different cutting edge preparations cause different effects on tool behavior in the downstream micro milling process. In this paper, the process forces, the tool wear and the surface quality of prepared micro milling tools are characterized in cutting tests.


2009 ◽  
Vol 76-78 ◽  
pp. 597-602 ◽  
Author(s):  
Berend Denkena ◽  
Luis de Leon ◽  
Jens Köhler

After the grinding process, the cutting edges of cemented carbide milling tools tend to chipping. Chipping has a strong influence on the tool performance. For this reason, the cutting edges are further prepared. Additionally, a cutting edge rounding has an impact on the wear behavior and the process stability. For the cutting edge preparation of milling tools, magnetic finishing is a promising process. This paper describes the process of magnetic finishing. The influencing parameters, i.e. the process time and the distance between the cutting tool and the magnetic disks, are investigated. Furthermore, the effect of magnetic finishing on the tool life is demonstrated using the example of a milling process with titanium.


2017 ◽  
Vol 107 (06) ◽  
pp. 453-460
Author(s):  
E. Prof. Uhlmann ◽  
J. Bruckhoff

Angesichts steigender Anforderungen an Zerspanwerkzeuge nimmt die Schneidkantenpräparation einen immer größer werdenden Stellenwert ein, da sich so die Standzeit von Zerspanwerkzeugen erhöhen lässt. Die bisher eingesetzten Präparationsverfahren eignen sich meist nur für einfache Verrundungen an der Schneidkante. In umfangreichen Untersuchungen wurde die Eignung von Formschleifprozessen zur Herstellung definierter Schneidkantenmikrogeometrien anhand von Arbeitsergebnissen analysiert.   Due to increasing demands on cutting tools cutting edge preparation has a high priority because it influences the tool life. Current cutting edge preparation processes can only generate simple roundings on the cutting edge. By extensive investigations the suitability of form grinding processes for the production of defined microgeometries on the cutting edge was analysed.


2021 ◽  
Vol 111 (11-12) ◽  
pp. 833-839
Author(s):  
Kolb Moritz ◽  
Tim Mayer ◽  
Nico Rasenberger

Dieser Beitrag beschreibt, wie sich die Standzeit von Kreissägeblättern durch Schneidkantenpräparation gezielt beeinflussen lässt. Hierfür wurden zunächst einzelne Segmente aus einem Sägeblatt herausgetrennt und Einzahnproben mit variierenden Schneidenmikrogeometrien mittels Bürstspanen präpariert. Anschließend wurde das Einsatz- und Verschleißverhalten der zuvor hergestellten Proben in einem Kreissäge-Modellversuch untersucht.   This article describes how the service life of circular saw blades can be specifically influenced by cutting edge preparation. For this purpose, individual segments were first cut out of a saw blade. These single-tooth specimens with varying cutting edge microgeometries were prepared by abrasive brushing. Then the usage and wear behavior of the previously produced samples was investigated in a circular saw model test.


2012 ◽  
Vol 201-202 ◽  
pp. 1178-1181
Author(s):  
Guo Bing Chai ◽  
Wei Wang ◽  
Ai Bing Yu

Edge preparation is not only the process of grinding proper geometry of cutting edge or removing micro-cracks on cutting edge region, but also a way of improving cutting tool life. In this study, cutting models with different cutting edge radius were set up with FEM software. Medium carbon steel cutting tests were carried out using cutting tools with different edge radius. Cutting tool wear was simulated and measured for comparison. The simulation results show that edge radius has influences on tool wear. Tool cutting behavior is concerned with edge radius. A proper edge radius will improve the tool life. The experimental results show that proper edge preparation could improve tool impact resistance capability and reduce tool wear. The cutting tool life can be prolonged with suitable edge preparation. Edge preparation can improve cutting performance of cutting tool.


2015 ◽  
Vol 807 ◽  
pp. 153-161 ◽  
Author(s):  
Christian Bölling ◽  
Sebastian Güth ◽  
Eberhard Abele

In production processes uncertainty has a great impact on the product quality as well as production costs. In automotive industry the reaming of valve guides in a cylinder head of a combustion engine is a quality determining process. Due to the force fitting of the valve guides into the cylinder head the final reaming process has to deal with increased uncertainty. On the other hand, the finished hole is closely tolerated. To ensure the process reliability the admissible tolerance must be strictly met even in case of uncertainty. This paper presents a possibility to achieve process reliability by a modified process chain with an additional pilot reaming tool. Thereby, the effect of different cutting edge preparation is also analyzed. Further, the influence of the pilot reamer geometry on the final hole quality is investigated.


Author(s):  
Tomáš ZLÁMAL ◽  
Šárka MALOTOVÁ ◽  
Tomáš SZOTKOWSKI ◽  
Ondřej VORTEL ◽  
Antonín TREFIL

Author(s):  
Ramesh Kuppuswamy ◽  
Kapui Mubita

Electro-polishing was used as an alternative to mechanical polishing for the cutting edge preparation of tungsten carbide (WC) ball nose end mills. High-quality cutting edge surfaces with roughness of magnitude 0.3–0.35 µm was achieved using the electro-polishing process. A direct current of 0.96 A was passed through an electrolytic cell containing the electrolyte sodium hydroxide with a concentration—2.5 mol/dm3. The ball nose end mill was suspended as the anode and a stainless steel (SS304) as the cathode. The ball nose end mill was electro-polished using the optimized parameters which was obtained through performing the preliminary experiments on tungsten carbide coupons of size D6 × 20 mm. The effects of electro-polishing on the surface texture of the ball nose end mill were determined using surface texture examinations. Machining tests were conducted on Ti6Al4V alloy to understand the growth of flank wear on the electro-polished ball nose end mills. After every 5 m of cutting distance, flank wear measurements were done for both the regular ball nose end mill and the electro-polished ball nose end mills. The results revealed that the electro-polished ball nose end mill reached a flank wear of 0.15 mm after a cutting distance of 550 m. This was significantly more than the cutting distance of the standard ball nose end mill of magnitude 350 m for the same amount of flank wear. This showed an increase in tool life of over 50%.


Sign in / Sign up

Export Citation Format

Share Document