The Research and Application of Nuclear Power Valve Steel Casting by CAD / CAE Simulation Design and Refining Technology

2011 ◽  
Vol 480-481 ◽  
pp. 1293-1297
Author(s):  
Hai Feng Chen ◽  
Feng Cao

With China cast CAE / InteCAST, we analyzed the ordinary valve casting parameters of solidification process, flow and heat transfer, and frequency smelting refining furnace used in the process of feeding wire, argon technology in the intermediate. Comparison-ray testing and physical anatomy of the results, we developed nuclear power valve steel casting process parameters. The results showed that the software forecast casting the shrinkage tendency of value; frequency smelting refining controlled sulfur, phosphorus and aluminum content; products fully comply with the ASTM A216/A216M overcome hot cracking defects, improving the casting ability of anti-fatigue.

2018 ◽  
Vol 764 ◽  
pp. 312-322
Author(s):  
Cheng Jun Wang ◽  
Jin Yan Chen ◽  
Yu Zhe Shen

In order to solve production defects such as shrinkage and porosity inside a certain train coupler casting in Anhui Xinhong Machinery Co.,Ltd., the main reasons of defects are found through the process of CAE simulation analysis and physical X ray detection to determine the location and morphology of casting defects and to reflect the actual situation of coupler filling and solidification process. The main reasons are found as follows: uneven thickness of casting structure, insufficient original gating and feeding system and etc. Through the process optimization and apply multidimensional vibration, then test validation, the train coupler casting which meets the technical requirements has been successfully produced, ensuring the smooth mass production of the company. ProCAST numerical simulation results have confirmed the rationality of the proposed work in optimization process measures in reducing and eliminating the shrinkage defects.


2021 ◽  
Vol 1798 (1) ◽  
pp. 012013
Author(s):  
Shanpeng Qin ◽  
Peng Lv ◽  
Sirun Li ◽  
Yongcun Li

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Michal Brezina ◽  
Tomas Mauder ◽  
Lubomir Klimes ◽  
Josef Stetina

The paper presents the comparison of optimization-regulation algorithms applied to the secondary cooling zone in continuous steel casting where the semi-product withdraws most of its thermal energy. In steel production, requirements towards obtaining defect-free semi-products are increasing day-by-day and the products, which would satisfy requirements of the consumers a few decades ago, are now far below the minimum required quality. To fulfill the quality demands towards minimum occurrence of defects in secondary cooling as possible, some regulation in the casting process is needed. The main concept of this paper is to analyze and compare the most known metaheuristic optimization approaches applied to the continuous steel casting process. Heat transfer and solidification phenomena are solved by using a fast 2.5D slice numerical model. The objective function is set to minimize the surface temperature differences in secondary cooling zones between calculated and targeted surface temperatures by suitable water flow rates through cooling nozzles. Obtained optimization results are discussed and the most suitable algorithm for this type of optimization problem is identified. Temperature deviations and cooling water flow rates in the secondary cooling zone, together with convergence rate and operation times needed to reach the stop criterium for each optimization approach, are analyzed and compared to target casting conditions based on a required temperature distribution of the strand. The paper also contains a brief description of applied heuristic algorithms. Some of the algorithms exhibited faster convergence rate than others, but the optimal solution was reached in every optimization run by only one algorithm.


2002 ◽  
Author(s):  
Nobuyoshi Sasaki ◽  
William L. Tordoff ◽  
Kazuyuki Kurisu ◽  
Yuji Yoshida

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 982 ◽  
Author(s):  
Dazhi Pu ◽  
Guanghua Wen ◽  
Dachao Fu ◽  
Ping Tang ◽  
Junli Guo

In the continuous casting process, the shrinkage of the peritectic phase transition during the initial solidification process has an important influence on the surface quality of peritectic steel. The initial solidification process of 0.10C%, 0.14C%, and 0.16C% peritectic steels was observed in situ by a high temperature laser confocal microscope, and the contraction degree during initial solidification was characterized by surface roughness. The results showed that under the cooling rate of 20 °C/s, the surface roughness value Ra(δ/γ) of 0.10C% peritectic steel was 32 μm, the Ra(δ/γ) value of 0.14C% peritectic steel was 25 μm, and the Ra(δ/γ) value of 0.16C% peritectic steel was 17 μm. With increasing carbon content, the contraction degree of the δ→γ transformation decreased, and the value of the surface roughness Ra(δ/γ) declined. Therefore, surface roughness can characterize the contraction degree of the δ→γ transformation in the initial solidification process of peritectic steel under the condition of a large cooling rate.


Author(s):  
Mehdi Farrokhnejad ◽  
Anthony G. Straatman ◽  
Jeffrey T. Wood

In this paper, the authors present a platform for the modeling of mold filling and solidification of binary alloys with properties similar to Mg alloys. A volume-of-fluid (VOF) based method is used to capture the interface between solid and liquid in binary alloys solidification process on a fixed non-uniform grid, developed for implementation in a colocated finite volume framework. Contrary to other works, to update the volume fraction (of fluid) in the field, a link between source-based type of energy equation and VOF reconstruction algorithm is described and implemented. A new approximation to the pressure gradient is presented to remove all ‘Spurious Currents’ [1] resulting from pressure jumps in the vicinity of the interface. Based upon the work presented, it is concluded that the present combination of the equations are not only computationally straightforward to implement and upgrade to a 3D problem, but also provides an excellent platform to capture the interface between constituents in a die-casting process including solidification and mold filling process. The current framework will be used in future works to characterize the local mechanical properties of Mg alloys by using information from simulation at the dendritic level.


2021 ◽  
Vol 1033 ◽  
pp. 18-23
Author(s):  
Li Tong He ◽  
Yi Dan Zeng ◽  
Jin Zhang

To obtain an A356 aluminum alloy casting with a uniform structure and no internal shrinkage defects, ProCAST software is used to set different filling and solidification process parameters for an A356 aluminum alloy casting with large wall thickness differences, And multiple simulations are conducted to obtain optimized casting process; then, based on the process, the microstructure of the thickest and thinnest part of the casting are simulated. The size, morphology, and distribution of the simulated microstructure of the thinnest part and the thickest part of the casting are very similar. The simulated microstructure is similar to that of the actual casting. This shows that castings with uniform structure and no internal shrinkage defects can be obtained through the optimized casting process .


2021 ◽  
Vol 1033 ◽  
pp. 24-30
Author(s):  
Yi Dan Zeng ◽  
Li Tong He ◽  
Jin Zhang

One of the main reasons for the scrap of cast thin-wall frame aluminum alloy castings is deformation and cracking. It is an effective method for solving the problem by predicting the distribution of casting stress, clarifying the size of the deformation and the location of the crack, and taking necessary measures in the process. This paper uses the ProCAST software to simulate the thermal stress coupling of A356 thin-walled frame castings, analyzes the influence of pouring temperature, pouring speed and mold temperature on the stress field distribution of castings, predicts the hot cracking trend and deformation, and optimizes Casting process..


2019 ◽  
Vol 90 (12) ◽  
pp. 1970121 ◽  
Author(s):  
Qiming Wang ◽  
Guoguang Cheng ◽  
Jingyu Li ◽  
Wenzhe Dou ◽  
Xuewen Hu

2020 ◽  
Vol 59 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Yanzhao Luo ◽  
Chenxi Ji ◽  
Wenyuan He ◽  
Yanqiang Liu ◽  
Xiaoshan Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document