scholarly journals Formation Mechanism of Large Inclusions in 80t 20Cr–8Ni Stainless Steel Casting for Nuclear Power

2019 ◽  
Vol 90 (12) ◽  
pp. 1970121 ◽  
Author(s):  
Qiming Wang ◽  
Guoguang Cheng ◽  
Jingyu Li ◽  
Wenzhe Dou ◽  
Xuewen Hu
2019 ◽  
Vol 90 (12) ◽  
pp. 1900349
Author(s):  
Qiming Wang ◽  
Guoguang Cheng ◽  
Jingyu Li ◽  
Wenzhe Dou ◽  
Xuewen Hu

Alloy Digest ◽  
2011 ◽  
Vol 60 (12) ◽  

Abstract Kubota Alloy HD (UNS J93005) is a heat-resisting stainless steel casting alloy suitable for long-term service at temperatures up to 1095 deg C (2000 deg F). The nearest wrought equivalent is type 327. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on corrosion resistance as well as casting and joining. Filing Code: SS-1110. Producer or source: Kubota Metal Corporation, Fahramet Division.


Alloy Digest ◽  
2006 ◽  
Vol 55 (11) ◽  

Abstract Kubota alloy HH II is a heat-resistant fully austenitic stainless steel casting for multiple furnace parts. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as casting and joining. Filing Code: SS-980. Producer or source: Kubota Metal Corporation, Fahramet Division.


Alloy Digest ◽  
2010 ◽  
Vol 59 (5) ◽  

Abstract Kubota Alloy HC is a heat resisting stainless steel casting suitable for long term service at temperatures up to 1093 deg C (2000 deg F). This alloy can maintain resistance to sulfur bearing environments up to 1093 deg C (2000 deg F). This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as casting and joining. Filing Code: SS-1065. Producer or source: Kubota Metal Corporation, Fahramet Division.


Alloy Digest ◽  
1982 ◽  
Vol 31 (6) ◽  

Abstract Type HN is an iron-chromium-nickel alloy containing sufficient chromium for good high-temperature corrosion resistance and with nickel content in excess of the chromium. This alloy has properties somewhat similar to the more widely used ACI Type HT alloy but with better ductility. Type HN is used for highly stressed components in the 1800-2000 F temperature range. It is used in the aircraft, automotive, petroleum, petrochemical and power industries for a wide range of components and parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-410. Producer or source: Various stainless steel casting companies.


Author(s):  
Ying Hong ◽  
Xuesheng Wang ◽  
Yan Wang ◽  
Zhao Zhang ◽  
Yong Han

Stainless steel 304 L tubes are commonly used in the fabrication of heat exchangers for nuclear power stations. The stress corrosion cracking (SCC) of 304 L tubes in hydraulically expanded tube-to-tubesheet joints is the main reason for the failure of heat exchangers. In this study, 304 L hydraulically expanded joint specimens were prepared and the residual stresses of a tube were evaluated with both an experimental method and the finite element method (FEM). The residual stresses in the outer and inner surfaces of the tube were measured by strain gauges. The expanding and unloading processes of the tube-to-tubesheet joints were simulated by the FEM. Furthermore, an SCC test was carried out to verify the results of the experimental measurement and the FEM. There was good agreement between the FEM and the experimental results. The distribution of the residual stress of the tube in the expanded joint was revealed by the FEM. The effects of the expansion pressure, initial tube-to-hole clearance, and yield strength of the tube on the residual stress in the transition zone that lay between the expanded and unexpanded region of the tube were investigated. The results showed that the residual stress of the expanded joint reached the maximum value when the initial clearance was eliminated. The residual stress level decreased with the decrease of the initial tube-to-hole clearance and yield strength. Finally, an effective method that would reduce the residual stress without losing tightness was proposed.


Sign in / Sign up

Export Citation Format

Share Document