Computational and Experimental Study of Temperature Distribution and Residual Stress in Butt-Joint TIG Welds

2011 ◽  
Vol 480-481 ◽  
pp. 459-465
Author(s):  
Kuang Hung Tseng ◽  
Kuan Lung Chen

This work conducted a non-linear finite element model associated with arc efficiency to simulate the temperature distribution and residual stress. A three-dimensional finite element analysis of temperature and stress in butt-joint TIG welds was performed using commercial software ANSYS. This model includes adjusting Gaussian distribution heat flux, alternating temperature dependent material properties, and managing thermal elasto-plastic material behavior. Computational results for both the temperature distribution and the residual stress are compared with available experimental data to confirm the accuracy of this technique. The simulated results of temperature distribution and residual stress are in good agreement with corresponding experimental data. The greatest value of this work does not lie in its ability to predict the magnitude and distribution of weld temperature and residual stress. Rather, this work proposed that prediction errors in a finite element model can be eliminated by modifying the arc power distribution function.

1990 ◽  
Vol 112 (3) ◽  
pp. 287-291 ◽  
Author(s):  
F. A. Kolkailah ◽  
A. J. McPhate

In this paper, results from an elastic-plastic finite-element model incorporating the Bodner-Partom model of nonlinear time-dependent material behavior are presented. The parameters in the constitutive model are computed from a leastsquare fit to experimental data obtained from uniaxial stress-strain and creep tests at 650°C. The finite element model of a double-notched specimen is employed to determine the value of the elastic-plastic strain and is compared to experimental data. The constitutive model parameters evaluated in this paper are found to be in good agreement with those obtained by the other investigators. However, the parameters determined by the numerical technique tend to give response that agree with the data better than do graphically determined parameters previously used. The calculated elastic-plastic strain from the model agreed well with the experimental strain.


Author(s):  
Yunfeng Cao ◽  
Yung C. Shin ◽  
Benxin Wu

Laser shock peening (LSP) under the water confinement regime (WCR) involves several complicated physical phenomena. Among these phenomena, the interaction between laser and coating material during LSP is very important to the laser induced residual stress, which has an important effect on the fatigue and corrosion properties of the substrate material. To gain a better understanding of this interaction, a series of experiments, including single shot, single track overlapping, and multi-track overlapping LSP, have been carried out on 4140 steel with black paint coating. A 3-D finite element model has also been developed to simulate the LSP process. Combining this with a previously developed confined plasma model, which has been verified by the experimental data from literature, the 3-D finite element model is used to predict the residual stresses induced in the substrate material as well as the indentation profile on the substrate surface. The model prediction of indentation profiles are compared with the experimental data and good agreements are obtained. The effect of process parameters on the residual stress has also been investigated both experimentally and theoretically.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


2021 ◽  
Author(s):  
Hussain AlBahrani ◽  
Nobuo Morita

Abstract In many drilling scenarios that include deep wells and highly stressed environments, the mud weight required to completely prevent wellbore instability can be impractically high. In such cases, what is known as risk-controlled wellbore stability criterion is introduced. This criterion allows for a certain level of wellbore instability to take place. This means that the mud weight calculated using this criterion will only constrain wellbore instability to a certain manageable level, hence the name risk-controlled. Conventionally, the allowable level of wellbore instability in this type of models has always been based on the magnitude of the breakout angle. However, wellbore enlargements, as seen in calipers and image logs, can be highly irregular in terms of its distribution around the wellbore. This irregularity means that risk-controlling the wellbore instability through the breakout angle might not be always sufficient. Instead, the total volume of cavings is introduced as the risk control parameter for wellbore instability. Unlike the breakout angle, the total volume of cavings can be coupled with a suitable hydraulics model to determine the threshold of manageable instability. The expected total volume of cavings is determined using a machine learning (ML) assisted 3D elasto-plastic finite element model (FEM). The FEM works to model the interval of interest, which eventually provides a description of the stress distribution around the wellbore. The ML algorithm works to learn the patterns and limits of rock failure in a supervised training manner based on the wellbore enlargement seen in calipers and image logs from nearby offset wells. Combing the FEM output with the ML algorithm leads to an accurate prediction of shear failure zones. The model is able to predict both the radial and circumferential distribution of enlargements at any mud weight and stress regime, which leads to a determination of the expected total volume of cavings. The model implementation is first validated through experimental data. The experimental data is based on true-triaxial tests of bored core samples. Next, a full dataset from offset wells is used to populate and train the model. The trained model is then used to produce estimations of risk-controlled stability mud weights for different drilling scenarios. The model results are compared against those produced by conventional methods. Finally, both the FEM-ML model and the conventional methods results are compared against the drilling experience of the offset wells. This methodology provides a more comprehensive and new solution to risk controlling wellbore instability. It relies on a novel process which learns rock failure from calipers and image logs.


2001 ◽  
Author(s):  
Y. W. Kwon ◽  
J. A. Lobuono

Abstract The objective of this study is to develop a finite element model of the human thorax with a protective body armor system so that the model can adequately determine the thorax’s biodynamical response from a projectile impact. The finite element model of the human thorax consists of the thoracic skeleton, heart, lungs, major arteries, major veins, trachea, and bronchi. The finite element model of the human thorax is validated by comparing the model’s results to experimental data obtained from cadavers wearing a protective body armor system undergoing a projectile impact.


Author(s):  
Hauke Herrnring ◽  
Søren Ehlers

Abstract This paper presents a finite element model for the simulation of ice-structure interaction problems, which are dominated by crushing. The failure mode of ice depends significantly on the strain rate. At low strain rates the ice behaves ductile, whereas at high strain rates ice reacts in brittle mode. This paper focuses on the brittle mode, which is the dominating mode for ship-ice interactions. A multitude of numerical approaches for the simulation of ice can be found in the literature. Nevertheless, the literature approaches do not seem suitable for the simulation of continuous ice-structure interaction processes at low and high confinement ratios in brittle mode. Therefore, this paper seeks to simulate the ice-structure interaction with the finite element method (FEM). The objective of the here introduced Mohr-Coulomb Nodal Split (MCNS) model is to represent the essential material behavior of ice in an efficient formulation. To preserve mass and energy as much as possible, the node splitting technique is applied, instead of the frequently used element erosion technique. The intention of the presented model is not to reproduce individual cracks with high accuracy, because this is not possible with a reasonable element size, due to the large number of crack fronts forming during the ice-structure interaction process. To validate the findings of the model, the simulated maximum ice forces and contact pressures are compared with ice-extrusion and double pendulum tests. During validation, the MCNS model shows a very good agreement with these experimental values.


Sign in / Sign up

Export Citation Format

Share Document