The Fabrication of Ag Nanostructure Array Integrated with Microfluidics for Surface Enhanced Raman Scattering

2011 ◽  
Vol 483 ◽  
pp. 281-286
Author(s):  
Zhao Xin Geng ◽  
Wen Liu ◽  
Xuan Ye Wang ◽  
Xiao Dong Wang ◽  
Zhi Hong Li ◽  
...  

Surface-enhanced Raman scattering (SERS) with enormous enhancements has shown great potential in single-molecule detection, however, the fabrication of large-scale, controllable and reproducible substrates with high SERS activity is a major limitation. This paper provides method to create wafer level SERS substrate with tunable nanoparticle sizes and interparticle gaps. Silver films with different thicknesses were deposited by electron beam evaporation (EBE) and annealed at 260 °C for 15min in nitrogen gas. When annealed, the thin Ag films break up under surface tension to form isolated nanoparticle. The nanoparticle size, density, and shape are found to be dependent on the thickness of Ag and the condition of annealing. The selective deposition of Ag nanoparticle on the silicon substrate is applied to create SERS active sites before the integration with a PDMS microfluidic chip which functions as a sample delivery device and a transparent optical window for SERS. Detections of Rhodamine 6G SERS spectra are accomplished by using a 633nm laser with 300W excitation power. The results show that the fabrication protocol of such a SERS substrate is low-cost, easy-fabrication and inexpensive. Therefore, this substrate may anticipate a wide range of applications in SERS-based sensors.

Nanomedicine ◽  
2021 ◽  
Author(s):  
Ting Lin ◽  
Ya-Li Song ◽  
Pu Kuang ◽  
Si Chen ◽  
Zhigang Mao ◽  
...  

Cancer is a malignant disease that seriously affects human health and life. Early diagnosis and timely treatment can significantly improve the survival rate of cancer patients. Surface-enhanced Raman scattering (SERS) is an optical technology that can detect and image samples at the single-molecule level. It has the advantages of rapidity, high specificity, high sensitivity and no damage to the sample. The performance of SERS is highly dependent on the properties, size and morphology of the SERS substrate. Preparation of SERS substrates with good reproducibility and chemical stability is a key factor in realizing the wide application of SERS technology in cancer diagnosis. In this review we provide a detailed presentation of the latest research on SERS in cancer diagnosis and the detection of cancer biomarkers, mainly focusing on nanotechnological approaches in cancer diagnosis by using SERS. We also consider the future development of nanostructure-based SERS in cancer diagnosis.


The Analyst ◽  
2021 ◽  
Author(s):  
Yanjia Jiang ◽  
Huimin Sun ◽  
Chenjie Gu ◽  
Yongling Zhang ◽  
Tao Jiang

There is a growing interest in developing a multifunctional surface-enhanced Raman scattering (SERS) substrate to deal with the challenge of the pretreatment-free detection and degradation of hazardous molecules in organic...


Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 520 ◽  
Author(s):  
Jia Zhu ◽  
Guanzhou Lin ◽  
Meizhang Wu ◽  
Zhuojie Chen ◽  
Peimin Lu ◽  
...  

Technology transfer from laboratory into practical application needs to meet the demands of economic viability and operational simplicity. This paper reports a simple and convenient strategy to fabricate large-scale and ultrasensitive surface-enhanced Raman scattering (SERS) substrates. In this strategy, no toxic chemicals or sophisticated instruments are required to fabricate the SERS substrates. On one hand, Ag nanoparticles (NPs) with relatively uniform size were synthesized using the modified Tollens method, which employs an ultra-low concentration of Ag+ and excessive amounts of glucose as a reducing agent. On the other hand, when a drop of the colloidal Ag NPs dries on a horizontal solid surface, the droplet becomes ropy, turns into a layered structure under gravity, and hardens. During evaporation, capillary flow was burdened by viscidity resistance from the ropy glucose solution. Thus, the coffee-ring effect is eliminated, leading to a uniform deposition of Ag NPs. With this method, flat Ag NPs-based SERS active films were formed in array-well plates defined by hole-shaped polydimethylsiloxane (PDMS) structures bonded on glass substrates, which were made for convenient detection. The strong SERS activity of these substrates allowed us to reach detection limits down to 10−14 M of Rhodamine 6 G and 10−10 M of thiram (pesticide).


Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 449
Author(s):  
Francesco Dell’Olio

The recent improvements in diagnosis enabled by advances in liquid biopsy and oncological imaging significantly better cancer care. Both these complementary approaches, which are used for early tumor detection, characterization, and monitoring, can benefit from applying techniques based on surface-enhanced Raman scattering (SERS). With a detection sensitivity at the single-molecule level, SERS spectroscopy is widely used in cell and molecular biology, and its capability for the in vitro detection of several types of cancer biomarkers is well established. In the last few years, several intriguing SERS applications have emerged, including in vivo imaging for tumor targeting and the monitoring of drug release. In this paper, selected recent developments and trends in SERS applications in the field of liquid biopsy and tumor imaging are critically reviewed, with a special emphasis on results that demonstrate the clinical utility of SERS.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012084
Author(s):  
Hammad R. Humud ◽  
Fatimah Jumaah Moaen

Abstract The current study examines recent advancements in surface-enhanced Raman scattering (SERS), a technique that employs flexible surfaces as an active substrate, this surfaces consist from two-dimensional thermo-plasmonic grating. With 53 nm Au layer (was deposited on the 2D grating structure of the PDMS by the PVD method). The explosive wire technique was used to preparing Ag nanoparticles that were used for the purpose of SERS. The effect of the plasmonic nanostructures on the absorption spectra and Surface - Enhanced Raman Scattering (SERS) activities was examined. Rhodamine 6G dye was used as a probe molecule. X-Ray diffraction (XRD) was used to examine the structural characteristics of the nanoparticles. The morphology was assessed using Field Emission Scanning Electron Microscopy(FESEM). A twin beam UV-Vis Spectrophotometer was used to measure the absorption of the combined Rh6G dye (concentration 1×10“–6M) with the nanostructures. a Sunshine Raman microscope system and a 50mm objective lens, used for investigating the Raman spectra of the Rh6G combined with nanostructures. The results showed that the enhancement factor (EF) for SERS of R6G (1×M) reached to (2.2×10 3) When using Ag nanoparticles and (0.08 × 103) when R6G deposited directly on the flexible substrates without nanostructures at the wave number (1650 cm−1), we produced a recyclable, homogeneous, and highly sensitive SERS substrate with dependable reproducibility. For the SERS substrate, a surface made up of two-dimensional (2D) flexible grating substrates was chosen to provide multiple modalities in electrical and medicinal applications.


NANO ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. 1750131 ◽  
Author(s):  
Jian Chen ◽  
Peitao Dong ◽  
Chaoguang Wang ◽  
Chenyu Zhang ◽  
Junfeng Wang ◽  
...  

A simple method for improving surface-enhanced Raman scattering (SERS) performance of aligned silver nanorod (Ag NR) array was investigated. This method was to construct a kind of hybrid substrate by grafting Au@Ag core–shell nanoparticles (NPs) into Ag NR array using poly(2-vinylphridine) (P2VPy) as a bridging agent. The hybrid substrate yielded excellent SERS performance as its detection limit improved from 10[Formula: see text] M to 10[Formula: see text] M using trans-1,2-bis(4-pyridyl)ethylene (BPE) as probe molecule, which was increased by two orders of magnitude compared with Ag NR array substrate. The significant improvement of SERS performance of Ag NR arrays was attributed to the addition of Au@Ag core–shell NPs. As a result of surface plasmon resonance generated by the interaction of electromagnetic (EM) (IAEM) filed between NP and NR structures, increasing hotspots were found at the connections of NPs and NRs, the gaps of adjacent rods, and the gaps of two particles consequently. These results were validated by the finite difference time domain (FDTD) calculation. Besides, hybrid substrate shows good performance in stability and reproducibility. The proposed method was simple and robust, which promoted SERS performance of Ag NR array effectively, showing great potential in the application of SERS substrate fabrication and SERS-based bio-chemical sensing.


Sign in / Sign up

Export Citation Format

Share Document