Spherical Head Surface Roughness Analysis and Experimental Research Based on the Abrasive Belt Grinding

2011 ◽  
Vol 487 ◽  
pp. 396-401
Author(s):  
Y. Zhang ◽  
Yun Huang ◽  
Zhi Huang

Surface roughness is one of the most important parameters in grinding, which directly affects the quality of the processed surface and has quite a lot of effect on the shape and position accuracy, installation accuracy of the workpiece. In the grinding process, the surface roughness is formatted from the abrasive which effects on the surface of spherical head, and is the result of mutual interference between abrasive and spherical head. Many factors affect the surface roughness, such as the shape and size of contact roller, abrasive morphology, grinding method, the stiffness of machine tool and workpiece, abrasive wear and vibration in the machining process. All of these have an impact grinding surface roughness. In this paper, analyzed the belt speed, workpiece speed, abrasive size, workpiece diameter, sand-planting density on the surface roughness of spherical head in experimental. And the effect trend of factors on surface roughness of workpiece was analyzed. Some valuable information was provided for selecting suitable parameter in spherical head grinding.

Author(s):  
Mohammad Arafat ◽  
◽  
Rasidi Ibrahim ◽  
Muhammad Agung Hambali ◽  
◽  
...  

In ultrasonic vibration-assisted turning (UVAT), vibration is one of the critical factors that causes noise during machining and affects cutting tool life, machining accuracy and workpiece surface quality. Vibration generated by piezoelectric actuators tends to transmit undesired vibration on the edge of the cutting tool and tool post. This situation hinders the maximization of vibration energy usage in the cutting tool. Thus, this paper investigated the vibration performance in the cutting tool by adding an isolator pad as damping element in the static zone of a tool holder to reduce the resonance generated during the machining process. The static, vibration and surface roughness analysis has been performed to determine the impact of damping on the machining performance. The results revealed a significant improvement in surface roughness where the best Ra for UVAT was 0.38 μm. In addition, vibration and static analysis showed the application of isolator pad capable of reducing 80% of energy loses and a supporter to increase the displacement, respectively. Ultimately this innovative solution can play an important role in improving UVAT performance.


Author(s):  
Mohammad Arafat ◽  
◽  
Rasidi Ibrahim ◽  
Muhammad Agung Hambali ◽  
◽  
...  

In ultrasonic vibration-assisted turning (UVAT), vibration is one of the critical factors that causes noise during machining and affects cutting tool life, machining accuracy and workpiece surface quality. Vibration generated by piezoelectric actuators tends to transmit undesired vibration on the edge of the cutting tool and tool post. This situation hinders the maximization of vibration energy usage in the cutting tool. Thus, this paper investigated the vibration performance in the cutting tool by adding an isolator pad as damping element in the static zone of a tool holder to reduce the resonance generated during the machining process. The static, vibration and surface roughness analysis has been performed to determine the impact of damping on the machining performance. The results revealed a significant improvement in surface roughness where the best Ra for UVAT was 0.38 μm. In addition, vibration and static analysis showed the application of isolator pad capable of reducing 80% of energy loses and a supporter to increase the displacement, respectively. Ultimately this innovative solution can play an important role in improving UVAT performance.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


Author(s):  
Yahya Choopani ◽  
Mohsen Khajehzadeh ◽  
Mohammad Reza Razfar

Total hip arthroplasty (THA) is one of the most well-known orthopedic surgeries in the world which involves the substitution of the natural hip joint by prostheses. In this process, the surface roughness of the femoral head plays a pivotal role in the performance of hip joint implants. In this regard, the nano-finishing of the femoral head of the hip joint implants to achieve a uniform surface roughness with the lowest standard deviation is a major challenge in the conventional and advanced finishing processes. In the present study, the inverse replica fixture technique was used for automatic finishing in the abrasive flow finishing (AFF) process. For this aim, an experimental setup of the AFF process was designed and fabricated. After the tests, experimental data were modeled and optimized to achieve the minimum surface roughness in the ASTM F138 (SS 316L) femoral head of the hip joint through the use of response surface methodology (RSM). The results confirmed uniform surface roughness up to the range of 0.0203 µm with a minimum standard deviation of 0.00224 for the femoral head. Moreover, the spherical shape deviation of the femoral head was achieved in the range of 7 µm. The RSM results showed a 99.71% improvement in the femoral head surface roughness (0.0007) µm under the optimized condition involving the extrusion pressure of 9.10 MPa, the number of finishing cycles of 95, and SiC abrasive mesh number of 1000.


2016 ◽  
Vol 862 ◽  
pp. 26-32 ◽  
Author(s):  
Michaela Samardžiová

There is a difference in machining by the cutting tool with defined geometry and undefined geometry. That is one of the reasons of implementation of hard turning into the machining process. In current manufacturing processes is hard turning many times used as a fine finish operation. It has many advantages – machining by single point cutting tool, high productivity, flexibility, ability to produce parts with complex shapes at one clamping. Very important is to solve machined surface quality. There is a possibility to use wiper geometry in hard turning process to achieve 3 – 4 times lower surface roughness values. Cutting parameters influence cutting process as well as cutting tool geometry. It is necessary to take into consideration cutting force components as well. Issue of the use of wiper geometry has been still insufficiently researched.


Sign in / Sign up

Export Citation Format

Share Document