A Design Method for Two-Degree-of-Freedom Multi-Period Repetitive Control Systems with the Specified Frequency Characteristic

2011 ◽  
Vol 497 ◽  
pp. 255-269
Author(s):  
Zhong Xiang Chen ◽  
Kou Yamada ◽  
Nobuaki Nakazawa ◽  
Iwanori Murakami ◽  
Yoshinori Ando ◽  
...  

Multi-period repetitive controllers improve the disturbance attenuation characteristic of themodified repetitive control system that follows the periodic reference input with small steady stateerror. Recently, the parameterization of all stabilizing multi-period repetitive controllers was studied.However, when the parameterization of all stabilizing multi-period repetitive controllers is used, theinput-output characteristic and the feedback characteristic cannot be specified separately. From thepractical point of view, it is desirable to specify the input-output characteristic and the feedback characteristicseparately. In addition, the parameterization is useful to design stabilizing controllers. Fromthis view-point, the parameterization of all stabilizing two-degree-of-freedom multi-period repetitivecontrollers those can specify the input-output characteristic and the disturbance attenuation characteristicseparately was solved by Yamada et al. However, when we design a stabilizing two-degree-offreedommulti-period repetitive controllers using the parameterization proposed by Yamada et al, thefrequency characteristic of the control system cannot be settled so easily. From the practical point ofview, the frequency characteristic of the control systems are required to be easily settled. This problemcan be solved by obtaining the parameterization of all stabilizing two-degree-of-freedom multi-periodrepetitive controllers with the specified frequency characteristic. In this paper, we propose the parameterizationof all stabilizing two-degree-of-freedom multi-period repetitive controllers with thespecified frequency characteristic.

2010 ◽  
Vol 36 ◽  
pp. 243-252 ◽  
Author(s):  
Yoshinori Ando ◽  
Tatsuya Sakanushi ◽  
Kou Yamada ◽  
Iwanori Murakami ◽  
Takaaki Hagiwara ◽  
...  

The multi-period repetitive (MPR) control system is a type of servomechanism for periodic reference inputs. Using MPR controllers, transfer functions from the reference input to the output and from the disturbance to the output of the MPR control system have infinite numbers of poles. To specify the input-output characteristic and the disturbance attenuation characteristic easily, Yamada and Takenaga proposed MPR control systems, named simple multi-period repetitive (simple MPR) control systems, where these transfer functions have finite numbers of poles. In addition, Yamada and Takenaga clarified the parameterization of all stabilizing simple MPR controllers. However, using the simple MPR repetitive controller by Yamada and Takenaga, we cannot specify the input-output characteristic and the disturbance attenuation characteristic separately. From the practical point of view, it is desirable to specify the input-output characteristic and the disturbance attenuation characteristic separately. The purpose of this paper is to propose the parameterization of all stabilizing two-degree-of-freedom (TDOF) simple MPR controllers that can specify the input-output characteristic and the disturbance attenuation characteristic separately.


2010 ◽  
Vol 459 ◽  
pp. 194-210 ◽  
Author(s):  
Kou Yamada ◽  
Nobuaki Nakazawa ◽  
Iwanori Murakami ◽  
Yoshinori Ando ◽  
Takaaki Hagiwara ◽  
...  

Multi-period repetitive controllers improve the disturbance attenuation characteristic of the modified repetitive control system that follows the periodic reference input with a small steady state error. Recently, the parameterization of all stabilizing multi-period repetitive controllers was studied. However, when the parameterization of all stabilizing multi-period repetitive controllers is used, the input-output characteristic and the feedback characteristic cannot be specified separately. From the practical point of view, it is desirable to specify the input-output characteristic and the feedback characteristic separately. In addition, the parameterization is useful to design stabilizing controllers. Therefore, the problem of obtaining the parameterization of all stabilizing two-degree-of-freedom multi-period repetitive controllers that can specify the input-output characteristic and the disturbance attenuation characteristic separately is important to solve. In this paper, we propose the parameterization of all stabilizing two-degree-of-freedom multi-period repetitive controllers.


Author(s):  
Tatsuya Hoshikawa ◽  
Kou Yamada ◽  
Yuko Tatsumi

When a plant can be stabilized by using a stable controller, the controller is said to be a strongly stabilizing controller. The importance of strong stabilizations is to solve some problems occurred by using unstable stabilizing controllers, for example, feedback control systems become high sensitive for disturbances. Parameterizations of all strongly stabilizable plants and of all stable stabilizing controllers have already proposed. However, stable stabilizing controllers designed by using their parameterization cannot specify the input-output characteristic and the feedback characteristic separately. One of the ways to specify these characteristics separately is to use a twodegree-of-freedom control system. However, the parameterization of all two-degree-of-freedom strongly stabilizing controllers has not been examined. The purpose of this paper is to propose the parameterization of all two-degree-of-freedom strongly stabilizing controllers for strongly stabilizable plants.


2013 ◽  
Vol 339 ◽  
pp. 45-49
Author(s):  
Li Xiang Zhang

PID control systems are the most commonly used control technology in industries. However, there are issues on control performances for the unstable process with time delays. In order to improve the control performances of PID control systems, a new two degree of freedom model driven PID control system is introduced in this paper and it is used to the unstable processes with time delay. The model driven PID control is capable of stabilizing with unstable processes by using PD feedback, regulating quickly for disturbance and tracking quickly to the change of set point. With case studies comparing with conventional PID control systems was done.


Author(s):  
Yun Zhao ◽  
Kou Yamada ◽  
Tatsuya Sakanushi ◽  
Satoshi Tohnai

The modified repetitive control system is a type of servomechanism for a periodic reference input. When modified repetitive control design methods are applied to real systems, the influence of uncertainties in the plant must be considered. In some cases, uncertainties in the plant make the control system unstable, even though the controller was designed to stabilize the nominal plant. Recently, Chen et al. propose the parameterization of all robust stabilizingmodified repetitive controllers for multipleinput/ multiple-output time-delay plants. However, using their method, it is complex to specify the lowpass filter in the internal model for the periodic reference input of which the role is to specify the inputoutput characteristic. Because, the low-pass filter is related to four free parameters in the parameterization. To specify the input-output characteristic easily, this paper proposes the parameterization of all robust stabilizing modified repetitive controllers for multiple-input/multiple-output time-delay plants with specified input-output characteristic such that the input-output characteristic can be specified beforehand.


2010 ◽  
Vol 36 ◽  
pp. 273-281 ◽  
Author(s):  
Kou Yamada ◽  
Tatsuya Sakanushi ◽  
Takaaki Hagiwara ◽  
Iwanori Murakami ◽  
Yoshinori Ando ◽  
...  

In this paper, we examine the parameterization of all stabilizing modified repetitive controllers for multiple-input/multiple-output plants with the specified input-output frequency characteristic. The parameterization of all stabilizing modified repetitive controllers for non-minimum phase systems was solved by Yamada et al. However, when we design a stabilizing modified repetitive controller using the parameterization by Yamada et al., the input-output frequency characteristic of the control system cannot be settled so easily. The input-output frequency characteristic of the control systems is required to be easily settled. This problem is solved by obtaining the parameterization of all stabilizing modified repetitive controllers with the specified input-output frequency characteristic. However, no paper has proposed the parameterization of all stabilizing modified repetitive controllers for multiple-input/multiple-output plants with the specified input-output frequency characteristic. In this paper, we propose the parameterization of all stabilizing modified repetitive controllers for multiple-input/multiple-output plants with the specified input-output frequency characteristic.


Sign in / Sign up

Export Citation Format

Share Document