Development of an Ultraprecise Piezoelectric Deformable Mirror for Adaptive X-Ray Optics

2012 ◽  
Vol 523-524 ◽  
pp. 50-53
Author(s):  
Hiroki Nakamori ◽  
Satoshi Matsuyama ◽  
Shota Imai ◽  
Takashi Kimura ◽  
Yasuhisa Sano ◽  
...  

Ultraprecise piezoelectric deformable mirrors have been developed to construct adaptive X-ray focusing optics whose optical parameters can be varied while simultaneously performing wavefront correction. We designed and developed a deformable mirror that did not have high-spatial-frequency deformation errors. Using a Fizeau interferometer, we demonstrated that the mirror could be deformed with a peak-to-valley figure accuracy of 5 nm. In addition, wave-optical simulations based on the Fresnel–Kirchhoff integral revealed that the mirror could focus hard X-rays to 90 nm under diffraction-limited conditions.

2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Yuri Shvyd'ko ◽  
Sergey Terentyev ◽  
Vladimir Blank ◽  
Tomasz Kolodziej

Next-generation high-brilliance X-ray photon sources call for new X-ray optics. Here we demonstrate the possibility of using monolithic diamond channel-cut crystals as high-heat-load beam-multiplexing narrow-band mechanically stable X-ray monochromators with high-power X-ray beams at cutting-edge high-repetition-rate X-ray free-electron laser (XFEL) facilities. The diamond channel-cut crystals fabricated and characterized in these studies are designed as two-bounce Bragg reflection monochromators directing 14.4 or 12.4 keV X-rays within a 15 meV bandwidth to 57Fe or 45Sc nuclear resonant scattering experiments, respectively. The crystal design allows out-of-band X-rays transmitted with minimal losses to alternative simultaneous experiments. Only ≲2% of the incident ∼100 W X-ray beam is absorbed in the 50 µm-thick first diamond crystal reflector, ensuring that the monochromator crystal is highly stable. Other X-ray optics applications of diamond channel-cut crystals are anticipated.


1971 ◽  
Vol 91 (3) ◽  
pp. 451-459 ◽  
Author(s):  
P. Gorenstein ◽  
B. Harris ◽  
H. Gursky ◽  
R. Giacconi
Keyword(s):  
X Rays ◽  

2017 ◽  
Vol 118 (10) ◽  
Author(s):  
T. Salditt ◽  
S. Hoffmann ◽  
M. Vassholz ◽  
J. Haber ◽  
M. Osterhoff ◽  
...  
Keyword(s):  
X Rays ◽  
X Ray ◽  

1988 ◽  
Vol 102 ◽  
pp. 303
Author(s):  
A.V. Vinogradov

SummaryTi, Si, C, Be and LiF have been studied as coatings for normal incidence (multilayers) and grazing incidence (steering many-fold reflection mirrors) optical elements. The multilayers have been tested with soft (130+250 Å and hard (1.54 Å) X-rays. From these measurements the multilayer parameters have been deduced.The carbon and lithium fluorine steering mirrors showed the reflection of 10+60% for the turning angles of 30 and 45 degrees and two wavelengths of 44.7 Å and 67.6 Å. The perspectives of other materials are also discussed.


2008 ◽  
Vol 16 (2) ◽  
pp. 6-9
Author(s):  
David O’Hara ◽  
Greg Brown ◽  
Eric Lochner

Although considerable advances have been made in Energy Dispersive Detectors for microanalysis, low energy analysis under 1000eV is still relatively poor due to detector response and inefficient production of low energy x-rays. X-ray optics fabrication methods by O’Hara and measurements by McCarthy et. al. indicated that it should be possible to fabricate x-ray optics that could be used to significantly increase the low energy x-ray flux seen by an EDS detector without increasing the beam current. Such an optic would be useful to increase low energy counts without moving the detector closer, which would simply increase the high energy counts and dead time.


Sign in / Sign up

Export Citation Format

Share Document