Analysis of Gene Expression and Morphology of P19 Cells Cultured in an Apatite-Fiber Scaffold

2012 ◽  
Vol 529-530 ◽  
pp. 370-373 ◽  
Author(s):  
Hide Ishii ◽  
Yuya Mukai ◽  
Mamoru Aizawa ◽  
Nobuyuki Kanzawa

Heart disease is the second most common cause of mortality in Japan. Most cases of late stage heart failure can only be effectively treated by a heart transplant. Cardiac tissue engineering is emerging both as a new approach for improving the treatment of heart failure and for developing new cardiac drugs. Apatite-fiber scaffold (AFS) was originally designed as a substitute material for bone. AFS contains two sizes of pores and is appropriate for the three dimensional proliferation and differentiation of osteoblasts. To establish engineered heart tissue, a pluripotent embryonal carcinoma cell line, P19.CL6, was cultured in AFS. P19.CL6 cells seeded into AFS proliferated well. Generally, cardiac differentiation of P19.CL6 cells is induced by treating suspension-cultured cells with dimethyl sulfoxide (DMSO), after which the cells form spheroids. However, our results showed that P19.CL6 cells cultured in AFS differentiated into myocytes without forming spheroidal aggregates, and could be cultured for at least one month. Thus, we conclude that AFS is a good candidate as a scaffold for cardiac tissue engineering.

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 386
Author(s):  
Ana Santos ◽  
Yongjun Jang ◽  
Inwoo Son ◽  
Jongseong Kim ◽  
Yongdoo Park

Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.


2019 ◽  
Vol 7 (10) ◽  
pp. 1563-1580 ◽  
Author(s):  
Yanxin Han ◽  
Wenbo Yang ◽  
Wenguo Cui ◽  
Ke Yang ◽  
Xiaoqun Wang ◽  
...  

Hydrogel-based approaches were reviewed for cardiac tissue engineering and myocardial regeneration in ischemia-induced heart failure, with an emphasis on functional studies, translational status, and clinical advancements.


2012 ◽  
Vol 303 (2) ◽  
pp. H133-H143 ◽  
Author(s):  
Thomas Eschenhagen ◽  
Alexandra Eder ◽  
Ingra Vollert ◽  
Arne Hansen

Cardiac tissue engineering aims at repairing the diseased heart and developing cardiac tissues for basic research and predictive toxicology applications. Since the first description of engineered heart tissue 15 years ago, major development steps were directed toward these three goals. Technical innovations led to improved three-dimensional cardiac tissue structure and near physiological contractile force development. Automation and standardization allow medium throughput screening. Larger constructs composed of many small engineered heart tissues or stacked cell sheet tissues were tested for cardiac repair and were associated with functional improvements in rats. Whether these approaches can be simply transferred to larger animals or the human patients remains to be tested. The availability of an unrestricted human cardiac myocyte cell source from human embryonic stem cells or human-induced pluripotent stem cells is a major breakthrough. This review summarizes current tissue engineering techniques with their strengths and limitations and possible future applications.


2021 ◽  
Vol 22 (16) ◽  
pp. 8550
Author(s):  
Arsalan Ul Haq ◽  
Felicia Carotenuto ◽  
Fabio De Matteis ◽  
Paolo Prosposito ◽  
Roberto Francini ◽  
...  

One of the most important features of striated cardiac muscle is the excitability that turns on the excitation-contraction coupling cycle, resulting in the heart blood pumping function. The function of the heart pump may be impaired by events such as myocardial infarction, the consequence of coronary artery thrombosis due to blood clots or plaques. This results in the death of billions of cardiomyocytes, the formation of scar tissue, and consequently impaired contractility. A whole heart transplant remains the gold standard so far and the current pharmacological approaches tend to stop further myocardium deterioration, but this is not a long-term solution. Electrically conductive, scaffold-based cardiac tissue engineering provides a promising solution to repair the injured myocardium. The non-conductive component of the scaffold provides a biocompatible microenvironment to the cultured cells while the conductive component improves intercellular coupling as well as electrical signal propagation through the scar tissue when implanted at the infarcted site. The in vivo electrical coupling of the cells leads to a better regeneration of the infarcted myocardium, reducing arrhythmias, QRS/QT intervals, and scar size and promoting cardiac cell maturation. This review presents the emerging applications of intrinsically conductive polymers in cardiac tissue engineering to repair post-ischemic myocardial insult.


ASAIO Journal ◽  
2004 ◽  
Vol 50 (4) ◽  
pp. 344-348 ◽  
Author(s):  
Hiroshi Naito ◽  
Yoshiaki Takewa ◽  
Toshihide Mizuno ◽  
Shoji Ohya ◽  
Yasuhide Nakayama ◽  
...  

Biomaterials ◽  
2002 ◽  
Vol 23 (24) ◽  
pp. 4793-4801 ◽  
Author(s):  
M.J.A van Luyn ◽  
R.A Tio ◽  
X.J Gallego y van Seijen ◽  
J.A Plantinga ◽  
L.F.M.H de Leij ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document