Comparison of Two Methods of Solving Electromagnetic Parameters of Metamaterials with the Unit Cell of Symmetrically Arranged SRRs

2012 ◽  
Vol 531-532 ◽  
pp. 351-357
Author(s):  
Wang Zhou Zhang ◽  
Zhu Ying Li ◽  
Ye Liu

Based on the principle that metamaterials-composite structured materials, in which permittivity(ε)and permeability(μ)are both negative in some frequencice, can be structured with periodically arranged SRRs and thin metallic wires which have negative effective permeability and negative effective permittivity respectively, the circular structure of SRRs was modified and a new split-ring resonator with symmetric structure was proposed. A detailed description of the design and simulation procedure was given simultaneously. According to the pattern of symmetric SRRs, ε and μ were calculated in analytic formula. Furthermore, metamaterials with symmetric SRRs was simulated with the software ANSOFT, and electromagnetic parameters were retried from S parameter. From analytic result and the retrieval result of electromagnetic parameters, left-handed behavior was obvious in a specific frequency range and the permittivity, the permeability and the index of refraction are all negative.

This chapter describes the fundamentals of left-handed metamaterials. From Maxwell's equations, constant phase term is originated, and it is revealed that its negative value is chosen in a negative permittivity and negative permeability (DNG) medium whereas its positive value is designated in a DPS medium. The negative phase constant results in a negative phase velocity and negative index of refraction in the medium. Complementary split ring resonator (CSRR) as a valuable metamaterial component is illustrated. The resonant frequencies of the CSRR are associated with the features of their arrangements. CSRR is agitated with the E field of the electric and magnetic wave together with the axis of the CSRR. Consequently, the CSRR presents negative permittivity in a particular frequency band.


2006 ◽  
Vol 264 (1) ◽  
pp. 130-134 ◽  
Author(s):  
P. Tassin ◽  
I. Veretennicoff ◽  
G. Van der Sande

Author(s):  
K.K.A. Devi ◽  
C. H. Ng

<p>A high gain patch antenna inspired by 4 layers of negative refractive index (NRI) metamaterial superstrate is proposed to operate at downlink radio frequency (RF) band (935 MHz to 960 MHz of GSM 900). The metamaterial unit cell consists of a nested split ring resonator (SRR) and strip line laminated on other side of FR4 substrate. The effective permittivity and permeability of the proposed unit cell are designed synchronously to approach zero, which leads the NRI superstrate to have impedance match with zero and negative refractive index.The NRI superstrate is studied using Fabry-Perot (F-P) resonant cavity. The gain is improved by 82.48% at the air gap of 55 mm in the desired frequency band.Therefore, the gain of the antenna is effectively enhanced based on the negative refractive index metamaterial. The measured radiation pattern and S parameter results also showed that it has good agreement with the simulation results.</p>


2006 ◽  
Vol 3 (2) ◽  
pp. 189-218 ◽  
Author(s):  
Victor Veselago ◽  
Leonid Braginsky ◽  
Valery Shklover ◽  
Christian Hafner

The main directions of studies of materials with negative index of refraction, also called left-handed or metamaterials, are reviewed. First, the physics of the phenomenon of negative refraction and the history of this scientific branch are outlined. Then recent results of studies of photonic crystals that exhibit negative refraction are discussed. In the third part numerical methods for the simulation of negative index material configurations and of metamaterials that exhibit negative index properties are presented. The advantages and the shortages of existing computer packages are analyzed. Finally, details of the fabrication of different kinds of metamaterials are given. This includes composite metamaterials, photonic crystals, and transmission line metamaterials for different wavelengths namely radio frequencies, microwaves, terahertz, infrared, and visible light. Furthermore, some examples of practical applications of metamaterials are presented.


2013 ◽  
Vol 448-453 ◽  
pp. 2199-2202
Author(s):  
Shi Wei Zhou ◽  
Yi Min Xie ◽  
Qing Li ◽  
Xiao Dong Huang

Permittivity signifies a key component to metamaterial which can achieve negative index of refraction, but it has not been sufficiently addressed in computational design. This paper aims to attain negative permittivity through a topology optimization approach and provides an example equivalent to electric inductive-capacitive resonator. Similar to split ring resonator, this locally self-contained (without the demand for inter-cell connection) resonator allows keeping bulk electromagnetic properties homogeneously, facilitating mass fabrication, and realizing single sampling test.


Sign in / Sign up

Export Citation Format

Share Document