Influence of Silicon Texturization on the Photovoltaic Properties of CuPc/n-Si Hybrid Solar Cells

2012 ◽  
Vol 531-532 ◽  
pp. 40-44
Author(s):  
Zhi Feng Liu ◽  
Yi Ting Liu

Hybrid solar cell based on copper-phthalocyanine (CuPc) and textured Si has been fabricated. Influence of silicon texturization on the photovoltaic properties of CuPc/n-Si hybrid solar cell was studied by current-voltage characteristic curves in the dark and under illumination conditions. As a result, it is found that textured Si can improve significantly the performance of hybrid solar cell. It exhibits a three times increase in the short-circuit current density with respect to that of the standard hybrid solar cell, and the short-circuit current density reaches up to 5.4 mA/cm2. In addition, the open-voltage and fill factor are almost constant. The solar-energy conversion efficiency is increased by about three times by the textured Si and achieved about 0.8% under “one Sun” illumination. Furthermore, the possible reasons for this result have been discussed.

2021 ◽  
Vol 877 (1) ◽  
pp. 012001
Author(s):  
Marwah S Mahmood ◽  
N K Hassan

Abstract Perovskite solar cells attract the attention because of their unique properties in photovoltaic cells. Numerical simulation to the structure of Perovskite on p-CZTS/p-CH3NH3PbCI3/p-CZTS absorber layers is performed by using a program solar cell capacitance simulator (SCAPS-1D), with changing absorber layer thickness. The effect of thickness p-CZTS/p-CH3NH3PbCI3/p-CZTS, layers at (3.2μm, 1.8 μm, 1.1 μm) respectively are studied. The obtained results are short circuit current density (Jsc ), open circuit voltage (V oc), fill factor (F. F) and power conversion efficiency (PCE) equal to (28 mA/cm2, 0.83 v, 60.58 % and 14.25 %) respectively at 1.1 μm thickness. Our findings revealed that the dependence of current - voltage characteristics on the thickness of the absorbing layers, an increase in the amount of short circuit current density with an increase in the thickness of the absorption layers and thus led to an increase in the conversion efficiency and improvement of the cell by increasing the thickness of the absorption layers.


2021 ◽  
pp. 100783
Author(s):  
Christopher Rosiles-Perez ◽  
Sirak Sidhik ◽  
Luis Ixtilico-Cortés ◽  
Fernando Robles-Montes ◽  
Tzarara López-Luke ◽  
...  

Author(s):  
В.С. Калиновский ◽  
Е.В. Контрош ◽  
Г.В. Климко ◽  
С.В. Иванов ◽  
В.С. Юферев ◽  
...  

Fabrication of connecting tunnel diodes with high peak tunnel current density exceeding the short-circuit current density of photoactive p−n junctions is an important task in development of multi-junction III−V photovoltaic converters of high-power optical radiation. Based on the results of a numerical simulation of tunnel diode current−voltage characteristics, a method is suggested for raising the peak tunnel current density by connecting a thin undoped i-type layer with thickness of several nanometers between the degenerate layers of a tunnel diode. The method of molecular-beam epitaxy was used to grow p−i−n GaAs/Al0.2Ga0.8As structures of connecting tunnel diodes with peak tunnel current density of up to 200A/cm2 .


2012 ◽  
Vol 05 (02) ◽  
pp. 1260004 ◽  
Author(s):  
GENTIAN YUE ◽  
JIHUAI WU ◽  
YUNFANG HUANG ◽  
YAOMING XIAOMING XIAO ◽  
ZHANG LAN

An iodine/iodide-free and polymer heterojunction-sensitized hybrid solar cell is fabricated by using 6,6-phenyl- C61 -butyric acid methyl ester (PCBM) as electronic acceptor, poly(3-hexylthiophene) (P3HT) as donor and TiO2 film as substrate. The PCBM–P3HT heterojunction can harvest ultraviolet-visible light, transport charge carriers, replacing the dyes and electrolytes in dye-sensitized solar cell. The cell with a PCBM/P3HT ratio of 1:2 shows a short circuit current of 5.47 mA⋅cm-2, an open circuit voltage of 0.849 V, a fill factor of 0.640 and a light-to-electric energy conversion efficiency of 2.97% under a simulated solar light irradiation of 100 mW⋅cm-2.


2013 ◽  
Vol 774-776 ◽  
pp. 753-756
Author(s):  
Xin Mei Liu ◽  
Feng Ming Fu ◽  
Wei Min Guo

A bulk-heterjunction hybrid solar cell based on CdS nanorods as electron acceptor and conjugated polymers P3HT (Poly (3-Hexylthiophene)) as donor was fabricated through solution processing. Plasmon-active silver nanoparticle layers were introduced in the hybrid solar cell. Silver nanoparticle layers were fabricated using thermal evaporation deposition of 10 nm of silver thin layers on indium tin oxide (ITO) substrate followed by annealing. Under the surface plasmon excitation in Ag nanoparticles deposited on a semiconductor surface, increasing optical electrical field inside the photoactive layer led to an increased short circuit current density (Jsc) and improved fill factor (FF) of the cell. Consequently, under AM1.5G illumination (100 mW.cm-2), the plasmon-decorated cell based on CdS-nanorods/P3HT showed a four-times increase of the power conversion efficiency (PCE) compared with the undecorated one.


2005 ◽  
Vol 12 (01) ◽  
pp. 19-25 ◽  
Author(s):  
M. RUSOP ◽  
M. ADACHI ◽  
T. SOGA ◽  
T. JIMBO

Phosphorus-doped amorphous carbon (n-C:P) films were grown by r. f.-power-assisted plasma-enhanced chemical vapor deposition at room temperature using a novel solid red phosphorus target. The influence of phosphorus doping on material properties of n-C:P based on the results of simultaneous characterization are reported. Moreover, the solar cell properties such as series resistance, short circuit current density, open circuit current voltage, fill factor and conversion efficiency along with the spectral response are reported for the fabricated carbon-based n-C:P/p-Si heterojunction solar cell that was measured by standard measurement technique. The cells performances have been given in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm 2, 25°C). The maximum of open-circuit voltage (V oc ) and short-circuit current density (J sc ) for the cells are observed to be approximately 236 V and 7.34, mAcm 2 respectively for the n-C:P/p-Si cell grown at lower r. f. power of 100 W. The highest energy conversion efficiency (η) and fill factor (FF) were found to be approximately 0.84% and 49%, respectively. We have observed that the rectifying nature of the heterojunction structures is due to the nature of n-C:P films.


2020 ◽  
Vol 25 (1) ◽  
pp. 1-7
Author(s):  
Mohammed Sami Abd ali ◽  
Ahmed Shaker Hussein ◽  
Hayder Mohammed hadi

ABSTRACT:   In this work was measured characteristics (current - voltage) for the  (fe2o3 )thin films . The characteristics of the current density-voltage(J-V) were calculated at in both dark and light (100 mw/cm2) conditions. The parameters for this research of the photovoltaic samples, that is, were obtained directly from the curves of the resulting characteristics on the basic variables for the solar cell: the short circuit current density  (Jsc‏  ( ‏ , saturation current (Jo ), open-circuit voltage  (Voc) , fill factor ( FF), and efficiency of solar energy conversion (yield) ƞ ,


In this paper, a novel photonic crystal (PhC) polycrystalline CdTe/Silicon solar cells are theoretically explained that increase their short circuit current density and conversion efficiency. The proposed structure consist of a polycrystalline CdTe/Silicon solar cell that a photonic crystal is formed in the upper cell. The optical confinement is achieved by means of photonic crystal that can adjust the propagation and distribution of photons in solar cells. For validation of modeling, the electrical properties of the experimentally-fabricated based CdS/CdTe solar cell is modeled and compared that there is good agreement between the modeling results and experimental results from the litterature. The results of this study showed that the solar cell efficiency is increased by about 25% compared to the reference cell by using photonic crystal. The open circuit voltage, short circuit current density, fill factor and conversion efficiency of proposed solar cell structure are 1.01 V, 40.7 mA/cm2, 0.95 and 27% under global AM 1.5 conditions, respectively. Furthermore, the influence of carrier lifetime variation in the absorber layer of proposed solar cell on the electrical characteristics was theoretically considered and investigated.


2014 ◽  
Vol 633-634 ◽  
pp. 509-512
Author(s):  
Ping Yang ◽  
Xiang Bo Zeng ◽  
Xiao Dong Zhang ◽  
Zhan Guo Wang

Silicon film as a surface passivation layer is reported to reduce surface recombination on silicon nanowires (SiNWs) and thus enable to improve SiNW solar cell (SC) performance. A question yet to be answered regards the link between the silicon film assets and the solar cell performances. We investigated the effect of the properties of silicon films on the SiNWs SC performances by adjusting hydrogen dilution. Our results showed that the open-circuit voltage (Voc) and short-circuit current density (Jsc) of SiNWs SC increase until hydrogen dilution 10 and then decrease. An open-circuit voltage of 0.397 V and short-circuit current density of 18.42 mA/cm2 are achieved at optimized hydrogen dilution. Based on the analysis of silicon film properties we proposed that the increase of defect density with hydrogen dilution was the main cause for the deterioration of SiNWs SC performance.


Sign in / Sign up

Export Citation Format

Share Document