IODINE/IODIDE-FREE AND POLYMER HETEROJUNCTION-SENSITIZED HYBRID SOLAR CELL

2012 ◽  
Vol 05 (02) ◽  
pp. 1260004 ◽  
Author(s):  
GENTIAN YUE ◽  
JIHUAI WU ◽  
YUNFANG HUANG ◽  
YAOMING XIAOMING XIAO ◽  
ZHANG LAN

An iodine/iodide-free and polymer heterojunction-sensitized hybrid solar cell is fabricated by using 6,6-phenyl- C61 -butyric acid methyl ester (PCBM) as electronic acceptor, poly(3-hexylthiophene) (P3HT) as donor and TiO2 film as substrate. The PCBM–P3HT heterojunction can harvest ultraviolet-visible light, transport charge carriers, replacing the dyes and electrolytes in dye-sensitized solar cell. The cell with a PCBM/P3HT ratio of 1:2 shows a short circuit current of 5.47 mA⋅cm-2, an open circuit voltage of 0.849 V, a fill factor of 0.640 and a light-to-electric energy conversion efficiency of 2.97% under a simulated solar light irradiation of 100 mW⋅cm-2.

2012 ◽  
Vol 531-532 ◽  
pp. 40-44
Author(s):  
Zhi Feng Liu ◽  
Yi Ting Liu

Hybrid solar cell based on copper-phthalocyanine (CuPc) and textured Si has been fabricated. Influence of silicon texturization on the photovoltaic properties of CuPc/n-Si hybrid solar cell was studied by current-voltage characteristic curves in the dark and under illumination conditions. As a result, it is found that textured Si can improve significantly the performance of hybrid solar cell. It exhibits a three times increase in the short-circuit current density with respect to that of the standard hybrid solar cell, and the short-circuit current density reaches up to 5.4 mA/cm2. In addition, the open-voltage and fill factor are almost constant. The solar-energy conversion efficiency is increased by about three times by the textured Si and achieved about 0.8% under “one Sun” illumination. Furthermore, the possible reasons for this result have been discussed.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3797 ◽  
Author(s):  
Syed Abdul Moiz ◽  
A. N. M. Alahmadi ◽  
Abdulah Jeza Aljohani

Among various photovoltaic devices, the poly 3, 4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS) and silicon nanowire (SiNW)-based hybrid solar cell is getting momentum for the next generation solar cell. Although, the power-conversion efficiency of the PEDOT:PSS–SiNW hybrid solar cell has already been reported above 13% by many researchers, it is still at a primitive stage and requires comprehensive research and developments. When SiNWs interact with conjugate polymer PEDOT:PSS, the various aspects of SiNW array are required to optimize for high efficiency hybrid solar cell. Therefore, the designing of silicon nanowire (SiNW) array is a crucial aspect for an efficient PEDOT:PSS–SiNW hybrid solar cell, where PEDOT:PSS plays a role as a conductor with an transparent optical window just-like as metal-semiconductor Schottky solar cell. This short review mainly focuses on the current research trends for the general, electrical, optical and photovoltaic design issues associated with SiNW array for PEDOT:PSS–SiNW hybrid solar cells. The foremost features including the morphology, surface traps, doping of SiNW, which limit the efficiency of the PEDOT:PSS–SiNW hybrid solar cell, will be addressed and reviewed. Finally, the SiNW design issues for boosting up the fill-factor, short-circuit current and open-circuit voltage will be highlighted and discussed.


2012 ◽  
Vol 567 ◽  
pp. 236-239
Author(s):  
Peng Wang ◽  
An Mei Wang ◽  
Zhen Hua Zhang ◽  
Li Bo Fan ◽  
Yan Lei ◽  
...  

Lead sulfide (PbS) magic cubes were prepared by a simple hydrothermal method without any organic solvent. The product was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and absorption spectrum. A solar cell, with a structure of Al/P3HT:PbS/PEDOT:PSS/ITO/Glass, was made. By a spin coating method, a hybrid film of poly(3-hexylthiophene) (P3HT) and PbS was prepared on the PEDOT:PSS layer. The solar cells are photosensitive in a large spectral range (visible and near infrared regions). The cells, with the area of 0.15 cm2 without any special treatment, have shown the values of open-circuit voltage (Voc) of 242 mV, short circuit current (Jsc) of 0.01 mA/cm2, energy conversion efficiency (η) of 0.01 % and fill factor (FF) of 0.31 under illumination intensity of 100 mW/cm2.


2014 ◽  
Vol 925 ◽  
pp. 580-584 ◽  
Author(s):  
Mohamad Syafiq Alias ◽  
Sharul Ashikin Kamaruddin ◽  
Che Ani Norhidayah ◽  
Nurulnadia Sarip ◽  
Nayan Nafarizal ◽  
...  

In this paper, we explore the characteristics of bulk heterojunction solar cell based on poly (3-hexyl thiophene) [P3HT] and [6,6]-phenyl-C61-butyric acid methyl ester [PCBM] by introducing a buffer layer with device configuration of ITO/ZnO/P3HT:PCBM/Au. Nanostructured ZnO with individual diameter around 20-50 nm was used as the buffer layer and its effects on the short circuit current density, Jsc and open circuit voltage, Voc were investigated. It was found that, the electrical characteristic of the organic solar cell was obviously changed by introducing the buffer layer. Solar cell characteristic with Voc of 0.3939 V was obtained but the Jsc was very small. The surface topology of the P3HT:PCBM was investigated using an atomic force microscopy (AFM). ZnO nanoparticles were observed using a field emission scanning electron microscope (FESEM) and the electrical properties of the solar cell was measured using a solar simulator with a current – voltage (I-V) measurement system.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Hwen-Fen Hong ◽  
Tsung-Shiew Huang ◽  
Wu-Yih Uen ◽  
Yen-Yeh Chen

We performed accelerated tests on sealed and nonsealed InGaP/InGaAs/Ge triple-junction (TJ) solar cells in a complex high temperature and high humidity environment and investigated the electrical properties over time. The degradation of energy conversion efficiency in nonsealed cells was found to be more serious than that in sealed cells. The short-circuit current (ISC), open-circuit voltage (VOC), and fill factor (FF) of sealed cells changed very slightly, though the conversion efficiency decreased 3.6% over 500 h of exposure. This decrease of conversion efficiency was suggested to be due to the deterioration of silicone encapsulant. TheISC,VOC, and FF of nonsealed cells decreased with increasing exposure time. By EL and SEM analysis, the root causes of degradation can be attributed to the damage and cracks near the edge of cells induced by the moisture ingress. It resulted in shunt paths that lead to a deterioration of the conversion efficiency of solar cell by increasing the leakage current, as well as decreasing open-circuit voltage and fill factor of nonsealed solar cells.


2015 ◽  
Vol 43 ◽  
pp. 11-20 ◽  
Author(s):  
A.T.M. Saiful Islam ◽  
Mushtaq Ahmed Sobhan ◽  
Abu Bakar Md. Ismail

This article focuses on the work which deals with the effect of introducing macroporous silicon as the cathode of hybrid solar cell. This work shows that the photocurrent of bulk-heterojunction hybrid solar cell can be enhanced by using macroporous silicon (macro-PSi) as the cathode that provided increased effective contact surface area at the interface of organic-inorganic material. The organic compound (3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) polymer blend at 1:1 ratio was used to fabricate the solar cell. It was found that the pore-diameter of the porous silicon plays an important role on short-circuit current of the fabricated hybrid solar cell. Huge enhancement of short-circuit current density (~ 73 times) was obtained when the average pore diameter of macro-PSi was comparable to the photogenerated carrier transport length of the photoactive polymer. The annealing of the whole structure further enhanced the overall performance of the fabricated hybrid solar cell.


2018 ◽  
Vol 6 (6) ◽  
Author(s):  
Hafeez Yusuf Hafeez ◽  
Bala Ismail Adam

In this analytical approach we fabricate and characterized a Titanium Dioxide Dye sensitized solar cell using Doctor-Blade Technique. The samples were given annealing treatment at various time of 20, 30 and 40 minutes respectivelyat constant annealing temperature of 450oC. The device under test (DUT) were tested using a Kiethley 2400, source meter under A.M 1.5 (1000W/m2) illumination from a Newport class A solar simulator.The results shows that at the miscellaneous annealing time, the open circuit voltagesVoc= 0.28V, 0.30V and 0.29V, the short circuit current density Jsc=95.5µAcm-2 , 104.1µAcm-2and 105µAcm-2, the fill factor FF= 0.411, 0.448 and 0.525 and the energy conversion efficiency, η = 0.011, 0.014 and 0.016 respectively.With best results of open circuit voltage Voc=0.30, short circuit current density Jsc= 105mAcm-2, fill factor FF= 0.525 and energy conversion efficiency η= 0.016 was achieved.It was observed that the power density, Fill Factor and efficiency increases with increasewith increase in annealing time.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012075
Author(s):  
Ammar J. Aswad ◽  
Nadeem K. Hassan ◽  
Adnan R. Ahmed

Abstract A general equation to determine properties of penternary solar cell based on Cu (In, Ga) (Se, S) 2 (CIGSSe) with a double buffer layer ZnS/Zn0.8Mg0.2O(ZMO) were derived. Numerical analysis of a (CIGSSe) solar cell with a double buffer layer ZnS/ZMO, CdS free absorber layer, were investigated using the AFORS-HET software simulation. Taking into consideration the effect of thickness and doping concentration for the CIGSSe absorption layer, ZnS buffer layer and ZnO:B(BZO) window layer on the electron transport, short circuit current density (Jsc) and open circuit voltage (Voc); numerical simulation demonstrated that the changes in band structure characteristics occurred. The solar energy conversion efficiency is 28.34%, the filling factor is 85.59%, the open circuit voltage is 782.3 mV, the short circuit current is 42.32 mA. then we take the range of the gradient between the ratio of x and y for the absorption layer, and the best result of Voc, Jsc, FF, Eff equal (838.7 mV, 40.94 mA/cm2, 86.23%, 29.61%) respectively at x= 0, y= 0.26.


2013 ◽  
Vol 771 ◽  
pp. 159-168 ◽  
Author(s):  
I. Jinchu ◽  
A. Bharatkumar Sharma ◽  
C.O. Sreekala ◽  
K.S. Sreelatha ◽  
K. Achuthan

The efficiency of the best Dye sensitized solar cell is primarily depends on the good light harvesting property of the photo anode. Present study uses Lawsone (2 hydroxy [1, -naphthoquinone), the natural dye and compare the performance of photo anode in bare TiO2 and with nanoporous CaCO3 coated TiO2. As compared to bare TiO2, the surface area of nanoporous CaCO3-coated TiO2 increases, consequently, a better amount of dye adsorption occurs. The coating of CaCO3 increases the impedance at TiO2/dye/electrolyte interface and affect lifetime of the photoelectrons. Due to this reasons the short circuit current Jsc, open-circuit voltage (Voc), and fill factor (FF) increases. Thereby, the energy conversion efficiency of the solar cell is improved.


2020 ◽  
Vol 16 (4) ◽  
pp. 556-567
Author(s):  
Asma Khalil ◽  
Zubair Ahmad ◽  
Farid Touati ◽  
Mohamed Masmoudi

Background: The photo-absorption and light trapping through the different layers of the organic solar cell structures are a growing concern now-a-days as it affects dramatically the overall efficiency of the cells. In fact, selecting the right material combination is a key factor in increasing the efficiency in the layers. In addition to good absorption properties, insertion of nanostructures has been proved in recent researches to affect significantly the light trapping inside the organic solar cell. All these factors are determined to expand the absorption spectrum and tailor it to a wider spectrum. Objective: The purpose of this investigation is to explore the consequence of the incorporation of the Ag nanostructures, with different sizes and structures, on the photo absorption of the organic BHJ thin films. Methods: Through a three-dimensional Maxwell solver software, Lumerical FDTD, a simulation and comparison of the optical absorption of the three famous organic materials blends poly(3- hexylthiophene): phenyl C71 butyric acid methyl ester (P3HT:PCBM), poly[N-9″-heptadecanyl-2,7- carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDTBT:PCBM) and poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt- 4,7-(2,1,3-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDPDTBT:PCBM) has been conducted. Furthermore, FDTD simulation study of the incorporation of nanoparticles structures with different sizes, in different locations and concentrations through a bulk heterojunction organic solar cell structure has also been performed. Results: It has been demonstrated that embedding nanostructures in different locations of the cell, specifically in the active layer and the hole transporting layer had a considerable effect of widening the absorption spectrum and increasing the short circuit current. The effect of incorporation the nanostructures in the active layer has been proved to be greater than in the HTL. Furthermore, the comparison results showed that, PCDTBT:PCBM is no more advantageous over P3HT:PCBM and PCPDTBT:PCBM, and P3HT:PCBM took the lead and showed better performance in terms of absorption spectrum and short circuit current value. Conclusion: This work revealed the significant effect of size, location and concentration of the Ag nanostructures while incorporated in the organic solar cell. In fact, embedding nanostructures in the solar cell widen the absorption spectrum and increases the short circuit current, this result has been proven to be significant only when the nanostructures are inserted in the active layer following specific dimensions and structures.


Sign in / Sign up

Export Citation Format

Share Document