Environmental UV-A Level Monitoring Using an Ag-TiO2 Schottky Diode

2013 ◽  
Vol 543 ◽  
pp. 113-116 ◽  
Author(s):  
Mehdi Mohamadzade Lajvardi ◽  
Farhad Akbari Boroumand

Here, we demonstrate the field applicability of the Ag-TiO2 Schottky diodes for environmental UV level measurements. The device is visible-blind and it is shown that its maximum sensitivity coincides the environmental UV spectrum (UV-A). These features, along with its low voltage and biasing insensitivity of its operation, simplify the electronic circuit required for the fabrication of a hand-held UV monitoring system.

2021 ◽  
Vol 11 (6) ◽  
pp. 7875-7880
Author(s):  
R. Uwamahoro ◽  
N. Mduma ◽  
D. Machuve

Voltage fluctuations in batteries form a major challenge the telecommunication towers face. These fluctuations mostly occur due to poor management and the lack of a battery voltage level monitoring system. The current paper presents a battery voltage-level monitoring system to be used in telecommunication towers. The proposed solution is incorporated with a centralized mobile application dashboard for accessing the live data of the installed battery, integrated with voltage-level, current, temperature, fire, and gas sensors. An Arduino Uno microcontroller board is used to process and analyze the collected data from the sensors. The Global Service Message (GSM) module is used to monitor and store data to the cloud. Users are alerted in the case of low voltage, fire, and increase in harmful gases in the tower through Short Message Service (SMS). The experiment was conducted at Ngorongoro and Manyara telecommunication towers. The developed system can be used in accessing battery information remotely while allowing real-time continuous monitoring of battery usage. The proposed battery voltage-level monitoring system contributes to the elimination of battery hazards in towers. Therefore, the proposed battery voltage level monitoring system can be adopted by telecommunication tower engineers for the reduction of voltage fluctuation risks.


2016 ◽  
Vol 136 (11) ◽  
pp. 878-883 ◽  
Author(s):  
Kazunori Nishimura ◽  
Yusaku Marui ◽  
Satonori Nishimura ◽  
Wataru Sunayama

Author(s):  
Bhanu P. Sood ◽  
Michael Pecht ◽  
John Miker ◽  
Tom Wanek

Abstract Schottky diodes are semiconductor switching devices with low forward voltage drops and very fast switching speeds. This paper provides an overview of the common failure modes in Schottky diodes and corresponding failure mechanisms associated with each failure mode. Results of material level evaluation on diodes and packages as well as manufacturing and assembly processes are analyzed to identify a set of possible failure sites with associated failure modes, mechanisms, and causes. A case study is then presented to illustrate the application of a systematic FMMEA methodology to the analysis of a specific failure in a Schottky diode package.


2020 ◽  
Vol 21 (1) ◽  
pp. 56-67
Author(s):  
Husneni Mukhtar ◽  
Doan Perdana ◽  
Parman Sukarno ◽  
Asep Mulyana

ABSTRACTThe needs of flood disaster management encourage various efforts from all scientific disciplines of science, technology, and society. This article discusses the efforts to prevent flooding due to the habit of disposing of their waste into rivers through an innovative waste management system using the approach and application of Internet-based technology (IoT). Previous research has produced a prototype of the waste level monitoring system. In this research, the prototype was developed into a practical technology, called SiKaSiT (IoT Based Trash Capacity Monitoring System). This technology aims to assist janitor in monitoring, controlling and obtaining information about trash capacity and disposal time easily through an application on the smartphone in real-time and online. The system was made using a level detection sensor integrated with NodeMCU and Wi-Fi, MQTTbroker-protocol and Android-based application. Furthermore, the system was implemented in Bojongsoang adjacent to the Citarum river, where the water often overflowed due to the high rainfall and volume of trash around it. The results of system testing in the field shown good performance with value ranges of reliability is (99,785 - 99,944)% and availability is (99,786 - 99,945)%. SiKaSiT has several advantages over other similar systems. First, there is an application on the user's smartphone to monitor the capacity of trash and notification for full-bin. Second, the ability to operate on a small-bandwidth internet network because the throughput time is only around 0.59 kbps, thereby saving internet bandwidth consumption. This system has also helped overcome the problem of community trash management in Kampung Cijagra, where 60% of them gave feedback "agree" and the rest "strongly agree".Keywords: waste, IoT, monitoring, flooding, riverABSTRAKKebutuhan penanggulangan bencana banjir mendorong berbagai upaya dari semua disiplin ilmu baik dari bidang sains, teknologi dan sosial. Dalam artikel ini, penulis membahas upaya pencegahan banjir akibat kebiasaan membuang sampah ke sungai melalui inovasi sistem manajemen sampah menggunakan pendekatan dan penerapan teknologi berbasis Internet of Things (IoT). Pada riset sebelumnya telah dihasilkan sebuah prototype sistem monitoring level sampah. Kemudian pada riset ini prototype tersebut dikembangkan menjadi suatu teknologi tepat guna, dinamakan dengan SiKaSiT (Sistem Pemantauan Kapasitas Sampah Berbasis IoT). Teknologi ini bertujuan untuk membantu petugas kebersihan dalam memantau, mengontrol dan memperoleh informasi tentang kapasitas sampah dan waktu pembuangan sampah dengan mudah melalui aplikasi di smartphone secara real time dan online. Sistem dibuat dengan menggunakan sensor deteksi ketinggian sampah yang diintegrasikan dengan NodeMCU dan Wi-Fi, protokol MQTT broker dan aplikasi berbasis android pada smartphone. Selanjutnya sistem diimplementasikan di daerah Bojongsoang yang berdekatan dengan sungai Citarum yang airnya sering meluap akibat tingginya curah hujan dan volume sampah di sekitarnya. Hasil pengujian sistem di lapangan menunjukkan kinerja yang baik dengan kisaran nilai reliability adalah (99,785 – 99,944) % dan availability adalah (99,786 – 99,945) %. SiKaSiT memiliki beberapa kelebihan dibanding sistem serupa lainnya. Pertama, adanya aplikasi di smartphone pengguna untuk memonitor kapasitas sampah dan notifikasi saat tempat sampah penuh. Kedua, sistem mampu beroperasi pada jaringan internet bandwith kecil karena waktu throughput-nya hanya sekitar 0,59 kbps sehingga menghemat konsumsi bandwith internet. Sistem ini juga telah membantu menanggulangi permasalahan pengelolaan sampah masyarakat Kampung Cijagra, dimana 60% masyarakat memberi feedback “setuju” dan sisanya “sangat setuju”.Kata kunci: Sampah, IoT, Monitoring, Banjir, Sungai


Author(s):  
Christo Biji ◽  
Vandana C P

The drinking water is one of the main problems affecting many countries now, in the same way we are not actually using the rain water properly. The misuse of water leads no many problems like uncontrolled water flow etc. Last year 2018 Kerala undergrown a deep flood because of huge rain due to that all the dams in Kerala opened simultaneously. It creates a huge flood in Kerala. Around 370 peoples died in Kerala due to this flood. The main reason is people are not aware of dam opening so the peoples near to the river all are washed off. Most of the dams are not having a digital sensing for water level. All the dams are having only scale measurement so failed to give information about damn opening. Water level monitoring system solves this problem It will give right information about water level in reservoir and it will avoid wastage water in tank.


Sign in / Sign up

Export Citation Format

Share Document