Synthesis and Characterization of NiO Doped SnO2 Nano-Flowers

2013 ◽  
Vol 575-576 ◽  
pp. 58-60
Author(s):  
Wei Ping Tang

In this present work, a new method for preparing NiO doped SnO2 nanoflowers by hydrothermal route is suggested. The composition and microstructure of samples were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Fourier transform infrared spectrum (FTIR). Moreover, a possible formation mechanism was discussed.

2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2000 ◽  
Vol 55 (9) ◽  
pp. 882-886 ◽  
Author(s):  
Martin Jansen ◽  
Sascha Vensky

The silver(I,II,III) oxide clathrate Ag7O8HCO3 was synthesized by anodic oxidation of silver(I) in a suspension of Ag2CO3 in an aqueous AgF solution. The title compound was characterized by single crystal X-ray diffraction (cubic, Fm3̄m, a = 9.8085(3) Å, Z = 4), scanning electron microscopy, thermal analysis, IR spectroscopy, 1H-solid state-NMR and measurement of the magnetic susceptibility


2014 ◽  
Vol 556-562 ◽  
pp. 109-112
Author(s):  
Shu Min Zheng ◽  
Kai Ming Wang

Lizardite were synthesized by hydrothermal reaction in an Fe3+doped solution/environment using nanometer SiO2and MgO as precursors. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR). The results show that: the synthetic samples are lizardite with a thickness ranging from 60 nm to 200 nm in the temperature range 200°C~230°C.


Clay Minerals ◽  
2016 ◽  
Vol 51 (4) ◽  
pp. 697-706 ◽  
Author(s):  
Yufeng Chen ◽  
Bao Yao ◽  
Yan Zou ◽  
Yudong Yan

AbstractThe intercalation of Tb(III) into layered magadiite is achieved by three-step ion exchanges with H+/Na+, TBA+ (tetra-n-butylammonium ions)/H+ and Tb(EDTA)3+/TBA+. Various techniques, including powder X-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive X-ray (SEM-EDX), thermogravimetric and differential thermogravimetry (TG-DTG), Fourier transform infrared (FTIR) spectroscopy, and photoluminescent spectroscopy (PL), were employed to characterize the Tb-intercalated magadiites. The XRD results revealed that the basal spacing of the Tb-intercalated magadiites was obviously larger than that of the Na-magadiite, confirming the intercalation. The IR spectra showed no bands attributable to EDTA in the Tb-intercalated magadiites, indicating that the EDTA has broken away from Tb(III)-ETDA complexes during ion exchange. Moreover, the basal spacing of Tb-intercalated magadiite tends to increase slightly with the increase in water content in the Tb-intercalated magadiite. The PL spectra show weak emissions, attributed to 5D4-7FJ (J = 3, 4, 5, 6) transitions of Tb3+.


2016 ◽  
Vol 872 ◽  
pp. 253-257 ◽  
Author(s):  
Pusit Pookmanee ◽  
Prakasit Intaphong ◽  
Jitrephan Phanmalee ◽  
Wiyong Kangwansupamonkon ◽  
Sukon Phanichphant

Bismuth vanadate (Bi2VO5.5) nanopowder was prepared by microwave method at 500 Watt for 2, 4 and 6 min. Bismuth nitrate pentahydrate (Bi (NO3)3•5H2O) and ammonium vanadate (NH4VO3) were used as the starting precursors with mole ratio of 2:1. The phase of Bi2VO5.5 nanopowder was characterized by X-ray diffraction (XRD). The morphology of Bi2VO5.5 nanopowder was investigated by scanning electron microscopy (SEM). The chemical composition of Bi2VO5.5 nanopowder was determined by energy dispersive X-ray spectroscopy (EDXS). The functional groups of Bi2VO5.5 nanopowder was identified by fourier transform infrared spectroscopy (FTIR).


2015 ◽  
Vol 33 (2) ◽  
pp. 301-305 ◽  
Author(s):  
Girish H. N. ◽  
Basavalingu B. ◽  
Shao G.-Q. ◽  
Sajan C. P. ◽  
S. K. Verma

AbstractGadolinium aluminum perovskite (GdAlO3, GAP) is a promising high temperature ceramic material, known for its wide applications in phosphors. Polycrystalline gadolinium aluminum perovskites were synthesized using a precursor of co-precipitate gel of GdAlO3 by employing hydrothermal supercritical fluid technique under pressure and temperature ranging from 150 to 200 MPa and 600 to 700 °C, respectively. The resulted products of GAP were studied using the characterization techniques, such as powder X-ray diffraction analysis (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDX). The X-ray diffraction pattern matched well with the reported orthorhombic GAP pattern (JCPDS-46-0395).


2011 ◽  
Vol 236-238 ◽  
pp. 1814-1817
Author(s):  
Hong Wang ◽  
Yan Jie ◽  
Hong Luo ◽  
Xue Feng

Monodisperse α-Fe2O3nanoparticles with average particle size of 110 nm were successfully prepared using olyvinylpyrrolidone (PVP) as surfactant via a novel hydrothermal route. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM). The experiments results revealed that PVP and the concentration of NH4HCO3have played a crucial role in the formation of the monodisperse a-Fe2O3nanoparticles.


Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 654 ◽  
Author(s):  
Aleksei V. Rusakov ◽  
Mariya A. Kuzmina ◽  
Alina R. Izatulina ◽  
Olga V. Frank-Kamenetskaya

To study strontium (Sr) incorporation into calcium oxalates (weddellite and whewellite), calcium-strontium oxalate solid solutions (Ca,Sr)[C2O4]∙nH2O (n = 1, 2) are synthesized and studied by a complex of methods: powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Two series of solid solutions, isomorphous (Ca,Sr)[C2O4]·(2.5 − x)H2O) (space group I4/m) and isodimorphous Ca[C2O4]·H2O(sp.gr. P21/c)–Sr[C2O4]·H2O(sp.gr. P 1 - ), are experimentally detected. The morphogenetic regularities of their crystallization are revealed. The factors controlling this process are discussed.


2018 ◽  
Vol 936 ◽  
pp. 53-57
Author(s):  
Bheechanat Duangdee ◽  
Dussadee Rattanaphra ◽  
Anusith Thanapimmetha ◽  
Maythee Saisriyoot ◽  
Penjit Srinophakun

This work presents the synthesis and characterization of mixed rare earths hydroxide heterogeneous catalyst. The catalysts were prepared by co-precipitation of mixed rare earths with NaOH at different pH (6, 7 and 12). The prepared catalysts were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDS). The XRF results showed that the catalyst composed of cerium (Ce), neodymium (Nd), lanthanum (La), praseodymium (Pr) and samarium (Sm) being predominant at pH up to 7. Particularly, cerium (Ce) was favorable precipitation at pH 7. This results were confirm by SEM-EDS. The Ce (OH)3 phase was clearly observed for the mixed rare earth catalyst precipitated at pH 7. The XRF, SEM-EDS and XRD results were consistency.


Sign in / Sign up

Export Citation Format

Share Document