Development of Technological Means for Formation of Multilayer Composite Coatings, Providing Increased Resistance of Carbide Tools, for Different Machining Conditions

2013 ◽  
Vol 581 ◽  
pp. 55-61 ◽  
Author(s):  
Vladimir P. Tabakov ◽  
A.S. Vereschaka

The present work documents the results of development a methodological and technological means for the formation of multilayer composite coatings essential to increasing the tool life of a cemented carbide cutting tool edge. A methodology, based on of a rational choice of structure, architecture, and properties of a multilayer coating for tool edge working in various cutting conditions, is formulated. The results demonstrate an increase of efficiency of the carbide tool edge life based on the methodology stated above, and are presented here.

2016 ◽  
Vol 40 ◽  
pp. 90-98 ◽  
Author(s):  
Alexey Anatolevich Vereschaka ◽  
Anatoliy Stepanovich Vereschaka ◽  
Jury I. Bublikov ◽  
Anatoliy Y. Aksenenko ◽  
Nikolay N. Sitnikov

The structures of surface layers of the tool material, adapted to the conditions of the thermomechanical loading during the cutting process, can be formed with the use of different processing methods, the most effective of which is to deposit functional coatings on working surfaces of the cutting tool. During the studies, two nanostructured multilayer composite coatings (NMCCs) were considered: Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrNbCrAl)N. Metallographic studies were conducted, and the phase compositions of the coatings were determined by X-ray crystal analysis. The efficiency of tools made of carbide T14K8 with developed coatings was determined by comparative evaluation of tool life of a tool without coating, a tool with standard coating (TiN), and a tool with elaborated coatings (Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrNbCrAl)N) in turning structural steel 45. These tests allow noting the increase in tool life of a tool with elaborated NMCCs by up to 4 times as compared with tool life of an uncoated tool and by up to 2 times as compared with tool life of standard coating TiN. Meanwhile, NMCC of Ti-TiN-(TiCrAl) showed lifetime about 10% longer than NMCC of Zr-ZrN-(ZrNbCrAl)N). The longer lifetime of NMCC of Ti-TiN-(TiCrAl) conforms to its better adhesion characteristics and thinner nanosublayers of its wear-resistant layer.


2017 ◽  
Vol 47 ◽  
pp. 11-16 ◽  
Author(s):  
Bilal Kursuncu ◽  
Halil Caliskan ◽  
Sevki Yilmaz Guven ◽  
Peter Panjan

The Inconel 718 superalloy is one of the most-used nickel based superalloys in the aerospace industry due to its superior mechanical properties, for instance, high thermal and chemical resistance, and high strength at elevated temperatures. However, the work hardening tendency, low thermal conductivity and high hardness of this superalloy cause early tool wear, leading to the material to be called as a hard-to-cut material. Therefore, deposition of a wear resistant hard coating on carbide cutting tools has a critical importance for longer tool life in milling operations of the Inconel 718 superalloy. In this study, carbide cutting tools were coated with multilayer nanocomposite TiAlSiN/TiSiN/TiAlN coating using the magnetron sputtering technique, and wear behavior of the coated tool was investigated during face milling of the Inconel 718 superalloy under dry conditions. Abrasive and adhesive wear mechanisms were founded as main failure mechanisms. The nanocomposite TiAlSiN/TiSiN/TiAlN coated carbide cutting tool gave better wear resistance, and thus it provided 1.7 times longer tool life and a smoother surface (Ra<0.18 μm) on the Inconel 718 material than the uncoated one.


2020 ◽  
Vol 150 ◽  
pp. 106388 ◽  
Author(s):  
Alexey Vereschaka ◽  
Sergey Grigoriev ◽  
Vladimir Tabakov ◽  
Mars Migranov ◽  
Nikolay Sitnikov ◽  
...  

2017 ◽  
Vol 129 ◽  
pp. 01038 ◽  
Author(s):  
Vladimir Tabakov ◽  
Aleksey Chikhranov ◽  
Sergei Sizov

Procedia CIRP ◽  
2018 ◽  
Vol 77 ◽  
pp. 545-548 ◽  
Author(s):  
Alexey Vereschaka ◽  
Sergey Grigoriev ◽  
Nikolay Sitnikov ◽  
Gaik Oganyan ◽  
Catherine Sotova

Author(s):  
Nagraj Patil ◽  
K. Gopalakrishna ◽  
B. Sangmesh

The cutting tool in the machining process plays an important role as it acts on the working material. There are a few methodologies have been persued to improve tool life, for example traditional cooling, single layer coating, multilayer coating, heat treatment process, nitrogen cooling and latest being the cryogenic treatment which reported a significant improvement in cutting tool life, chip morphology, reduction in heat generation. Hence, the cryogenic treatment is emerged as the sustainable machining process.  This paper presents machining of AISI 304 steel using both cryogenic treated (CT) and untreated (UT) cutting tool insert. The commercially available uncoated carbide insert has been cryogenically treated at -196°C for 24 hours soaking period. The machining test has been  conducted under four different cutting speeds. The material characterization of cutting insert is studied by using scanning electron microscopy (SEM), hardness test, and microscopic image analysis has been carried out before and after cryogenic treatment. The cutting tool performance is assessed in terms of of wear, cutting temperature, chip morphology, surface roughness under the influence of cryogenic machining and the results are contrast with UT one. The exploratory findings reveals that the deep cryogenic treatment (DCT) with 24 hours soaking period, performed better wear resistance and improved surface roughness of the cutting tool. Also considerable reduction in the flank wear, crater wear, cutting temperature is obtained and found improved chip morphology.


2021 ◽  
pp. 74-78
Author(s):  

The influence of pulsed laser treatment (PLT) on the structural parameters and mechanical properties of singlelayer and multilayer coatings is investigated. The contact indicators during cutting, indicators of the thermal and stressed state of the cutting wedge of a tool with multilayer coatings that have passed the PLT are presented. The effectiveness of PLT for multi-coated carbide cutting tool is shown. Keywords: pulsed laser processing, carbide cutting tool, multilayer coating, structural indicators, indicators of mechanical properties, durability period. [email protected], [email protected]


Procedia CIRP ◽  
2018 ◽  
Vol 77 ◽  
pp. 549-552 ◽  
Author(s):  
Alexey A. Vereschaka ◽  
Sergey Grigoriev ◽  
Nikolay N. Sitnikov ◽  
Jury I. Bublikov ◽  
Andre D.L. Batako

Sign in / Sign up

Export Citation Format

Share Document