Free Convection of Water-Al2O3 Nanofluid from Horizontal Porous Coated Tube

2013 ◽  
Vol 597 ◽  
pp. 15-20
Author(s):  
Janusz T. Cieśliński ◽  
Katarzyna Krygier

Nanofluids are expected to enhance heat transfer in many thermal systems. Present efforts are concentrated on boiling heat transfer of nanofluids, although single phase convection is of key importance in various appliances such as car radiators or heating systems. This paper presents experimental results of heat transfer during free convection of water-Al3O3 nanofluid from horizontal tube covered with metallic porous coating. Contrary to theoretical considerations deterioration of heat transfer was observed.

2012 ◽  
Vol 550-553 ◽  
pp. 3169-3172
Author(s):  
Ding Cai Zhang ◽  
Chun Jie Zhu ◽  
Xiao Ming Yang ◽  
Tao Han

Experimental studies of boiling heat transfer of R134a on single horizontal smooth tube and three enhanced tubes (E27, E28, E29) have been conducted at saturationtemperature of 5°C and at a given water flow rate of 2.5 m/s. The results ind icate that the boiling heat transfer outside a single horizontal tube to the parameters of tube is selective. Tube E28 with 1811fpm (46fpi) is optimal. Experimental results showed that the test tubes could effectively enhance heat transfer. The boiling heat transfer coefficients of tube E27, tube E28, tube E29 are with the average values of 8.41, 9.16 and 6.63 times as that of smooth tube, respectively.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 559
Author(s):  
Janusz T. Cieśliński ◽  
Slawomir Smolen ◽  
Dorota Sawicka

The results of experimental investigation of free convection heat transfer in a rectangular container are presented. The ability of the commonly accepted correlation equations to reproduce present experimental data was tested as well. It was assumed that the examined geometry fulfils the requirement of no-interaction between heated cylinder and bounded surfaces. In order to check this assumption recently published correlation equations that jointly describe the dependence of the average Nusselt number on Rayleigh number and confinement ratios were examined. As a heat source served electrically heated horizontal tube immersed in an ambient fluid. Experiments were performed with pure ethylene glycol (EG), distilled water (W), and a mixture of EG and water at 50%/50% by volume. A set of empirical correlation equations for the prediction of Nu numbers for Rayleigh number range 3.6 × 104 < Ra < 9.2 × 105 or 3.6 × 105 < Raq < 14.8 × 106 and Pr number range 4.5 ≤ Pr ≤ 160 has been developed. The proposed correlation equations are based on two characteristic lengths, i.e., cylinder diameter and boundary layer length.


2012 ◽  
Vol 550-553 ◽  
pp. 2913-2916 ◽  
Author(s):  
Jin Liang Tao ◽  
Xin Liang Wang ◽  
Pei Hua Shi ◽  
Xiao Ping Shi

In this paper, a new porous coating was formed directly on the surface of titanium metal via anodic oxidation. And by the SEM, the morphology of the coating, which is composed of well-ordered perpendicular nanotubes, was characterized. Moreover, taking deionized water as the test fluid, a visualization study of the coating on its pool boiling heat transfer performance was made. The results demonstrated that compared with the smooth surface, the nucleate boiling heat transfer coefficient can increase 3 times while the nucleate boiling super heat was reduced 30%.


2013 ◽  
Author(s):  
Zhuqiang Yang ◽  
Qincheng Bi ◽  
Yong Guo ◽  
Zhaohui Liu ◽  
Jianguo Yan

Author(s):  
Todd M. Bandhauer ◽  
Taylor A. Bevis

The principle limit for achieving higher brightness of laser diode arrays is thermal management. State of the art laser diodes generate heat at fluxes in excess of 1 kW cm−2 on a plane parallel to the light emitting edge. As the laser diode bars are packed closer together, it becomes increasingly difficult to remove large amounts of heat in the diminishing space between neighboring diode bars. Thermal management of these diode arrays using conduction and natural convection is practically impossible, and, therefore, some form of forced convective cooling must be utilized. Cooling large arrays of laser diodes using single-phase convection heat transfer has been investigated for more than two decades by multiple investigators. Unfortunately, either large fluid temperature increases or very high flow velocities must be utilized to reject heat to a single phase fluid, and the practical threshold for single phase convective cooling of laser diodes appears to have been reached. In contrast, liquid-vapor phase change heat transport can occur with a negligible increase in temperature and, due to a high enthalpy of vaporization, at comparatively low mass flow rates. However, there have been no prior investigations at the conditions required for high brightness edge emitting laser diode arrays: >1 kW cm−2 and >10 kW cm−3. In the current investigation, flow boiling heat transfer at heat fluxes up to 1.1 kW cm−2 was studied in a microchannel heat sink with plurality of very small channels (45 × 200 microns) using R134a as the phase change fluid. The high aspect ratio channels (4.4:1) were manufactured using MEMS fabrication techniques, which yielded a large heat transfer surface area to volume ratio in the vicinity of the laser diode. To characterize the heat transfer performance, a test facility was constructed that enabled testing over a range of fluid saturation temperatures (15°C to 25°C). Due to the very small geometric features, significant heat spreading was observed, necessitating numerical methods to determine the average heat transfer coefficient from test data. This technique is crucial to accurately calculate the heat transfer coefficients for the current investigation, and it is shown that the analytical approach used by many previous investigations requires assumptions that are inadequate for the very small dimensions and heat fluxes observed in the present study. During the tests, the calculated outlet vapor quality exceeded 0.6 and the base heat flux reached a maximum of 1.1 kW cm−2. The resulting experimental heat transfer coefficients are found to be as large a 58.1 kW m−2 K−1 with an average uncertainty of ±11.1%, which includes uncertainty from all measured and calculated values, required assumptions, and geometric discretization error from meshing.


Sign in / Sign up

Export Citation Format

Share Document