Seismic Strength of Reinforced Multi-Storey Masonry Walls

2014 ◽  
Vol 624 ◽  
pp. 19-26 ◽  
Author(s):  
Mario Como

Analysis of force transmission through the various structural components is needed to the full understanding of the seismic behavior of masonry buildings. It is in fact necessary to identify the weak links of the chain and define the essential reinforcements to insert in the structure. In this context the Paper analyzes the strengths of masonry walls under the action of out of plane and in plane horizontal forces and compares the systems of reinforcement of the walls that can use steel or Fiber Reinforced Polymers (FRP).

2017 ◽  
Vol 747 ◽  
pp. 119-127 ◽  
Author(s):  
Francesco Monni ◽  
Enrico Quagliarini ◽  
Stefano Lenci

This paper presents the results of an experimental campaign aimed at improving the innovative technique of continuos basalt fiber (BF) stitching in order to repair the masonry panels damaged by seismic events or to enhance the seismic behavior of unreinforced masonry walls. The masonry panels were tested under out-of-plane actions, one of the common way of failure for masonry walls during an earthquake. The most significant change introduced respect to the system already tested in previous studies, is the presence of pre-tensioned elements and mechanical anchorage of the BF ropes, always with the end of proposing a dry retrofitting system. The results indicate the effectiveness of this, increasing the performance of masonry wall specimens under out-of-plane actions respect to the damaged and unreinforced conditions. Besides, this technique potentially appears fully sustainable, because it is cheap, compatible, reversible, fire, and chemical resistant, it improves but not replaces original materials and, finally, it does not substantially use synthetic adhesives. All these reasons make this novel application of BF ropes fully sustainable and specialized to architectural heritage restoration.


2013 ◽  
Vol 9 (3) ◽  
pp. 32-39 ◽  
Author(s):  
Viorel Popa ◽  
Radu Pascu ◽  
Andrei Papurcu

Abstract Masonry buildings represent the most vulnerable part of the building stock to seismic action in Romania. The main goal of this experimental research program is to investigate the efficiency of several retrofitting solutions using fiber reinforced polymers. Research focused on the lateral strength and displacement capacity of the retrofitted specimens. The masonry walls were built using solid bricks. Glass or carbon fiber reinforced polymers (GFRP or CFRP) embedded in a fiber reinforced mortar layer were used for jacketing. Seven specimens having essentially 25cm width, 1,75m height and 2,10m length were tested in the experimental research program. These specimens were subjected to a constant vertical compressive stress of 1,2MPa. A quasi-static load protocol was considered for the horizontal loading. This paper presents the layout of the experimental research program and some preliminary results.


2012 ◽  
Vol 166-169 ◽  
pp. 2429-2435
Author(s):  
Wen Wen Luo ◽  
Ying Min Li ◽  
Ni Na Zheng ◽  
Na Chen

In order to improve the seismic behavior of the rural masonry buildings and reduce the cost and be convenient for construction, a precast tie-column system was put forward, which was suitable for masonry buildings, constructed by fired common bricks or porous bricks. The uniaxial compression constitutive relation of brick masonry was used for simulating the precast tie-column. And this paper analyzed the difference of the seismic behavior of masonry walls which bearing different vertical compressive stress, and confined by cast-in-place tie-columns or precast tie-columns, and whether contain windows or not. The results show that the uniaxial compression constitutive relation used for simulating precast tie-column is reasonable and the seismic behavior of masonry walls confined by precast tie-columns is better than the wall without tie-colums, and equal to those confined by cast-in-place tie-columns.


2016 ◽  
Vol 32 (4) ◽  
pp. 2317-2335 ◽  
Author(s):  
Dante Navarrete-Macias ◽  
Jorge Varela-Rivera ◽  
Luis Fernandez-Baqueiro

This paper presents the results of a study on the out-of-plane seismic behavior of confined masonry walls. Five confined walls were tested under reverse cyclic loads. The variables studied were the axial stress and the wall aspect ratio. Analytical out-of-plane strength of walls was calculated considering the strengths of the wall panel and the concrete confining elements. The former was determined using the unidirectional strut method and the latter using a plastic analysis. It was observed that for walls with the same aspect ratio, as the axial stress increases, the out-of-plane strength increases. For walls with the same axial stress, as the aspect ratio increases, the strength decreases. Based on comparisons between analytical and experimental results, it was concluded that the models developed in this work predict accurately the out-of-plane strength of the walls.


2021 ◽  
Vol 898 ◽  
pp. 1-7
Author(s):  
Ingrid Boem ◽  
Natalino Gattesco

Historic masonry buildings experience a high seismic vulnerability: innovative intervention strategies for strengthening, based on the use of fibre-based composite materials are gradually spreading. In particular, the coupling of fibre-based materials with mortar layers (Fibre Reinforced Mortar technique - FRM) evidenced a good chemical and mechanical compatibility with the historical masonry and proved to be effective for the enhancement of both in-plane and out-of-plane performances of masonry, contrasting the opening of cracks and improving both resistance and ductility. The resistant mechanisms that arise in FRM strengthened masonry walls subjected to in-plane horizontal actions are analyzed in the paper and a practical design approach to evaluate their performances is illustrated, evidencing the dominant collapse mode at the varying of the masonry characteristics. Some masonry walls are analyzed numerically and analytically, as “case study”.


Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 205
Author(s):  
Igor Tomić ◽  
Francesco Vanin ◽  
Ivana Božulić ◽  
Katrin Beyer

Though flexible diaphragms play a role in the seismic behaviour of unreinforced masonry buildings, the effect of the connections between floors and walls is rarely discussed or explicitly modelled when simulating the response of such buildings. These flexible diaphragms are most commonly timber floors made of planks and beams, which are supported on recesses in the masonry walls and can slide when the friction resistance is reached. Using equivalent frame models, we capture the effects of both the diaphragm stiffness and the finite strength of wall-to-diaphragm connections on the seismic behaviour of unreinforced masonry buildings. To do this, we use a newly developed macro-element able to simulate both in-plane and out-of-plane behaviour of the masonry walls and non-linear springs to simulate wall-to-wall and wall-to-diaphragm connections. As an unretrofitted case study, we model a building on a shake table, which developed large in-plane and out-of-plane displacements. We then simulate three retrofit interventions: Retrofitted diaphragms, connections, and diaphragms and connections. We show that strengthening the diaphragm alone is ineffective when the friction capacity of the wall-to-diaphragm connection is exceeded. This also means that modelling an unstrengthened wall-to-diaphragm connection as having infinite stiffness and strength leads to unrealistic box-type behaviour. This is particularly important if the equivalent frame model should capture both global in-plane and local out-of-plane failure modes.


Sign in / Sign up

Export Citation Format

Share Document