Adaptive Identification and Control of Hysteresis in Piezoelectric Actuators

2014 ◽  
Vol 625 ◽  
pp. 129-133
Author(s):  
Xue Song Chen ◽  
Xin Chen ◽  
Xin Du Chen ◽  
Ming Sheng Yang

Smart actuators, such as piezoceramic actuators, magnetostrictive actuators, and shape memory alloy actuators are widely used in applications of micrositioning and vibration control. Piezoelectric (PZT) actuators having the characteristic of infinitely small displacement resolution are popularly applied as actuators in precision positioning systems. However, the tracking control accuracy of the precision positioning systems is difficultly achieved because of its nonlinear hysteresis effect. Hence, it is important to take hysteresis effect into consideration for improving the trajectory tracking performance. In this paper, in order to capture the hysteresis nonlinearity in the PZT actuators, the Hammerstein model is put to use. The fuzzy control algorithm is used to identify the weighing values. The adaptive inverse controller based on adaptive fuzzy inference is used to track the PZT actuator. We firstly identify the weighting values of the Hammerstein model in situ using the multi-mode fuzzy control algorithm based on the error between reference displacement and actual displacement of the actuator, and then calculate the weighting values and threshold values of the Hammerstein model. Finally, we obtain the feed-forward input voltage. The stability of the controller in the presence of the estimated state is demonstrated. The experimental results show the performance is effectively improved under the intelligent control method.

2012 ◽  
Vol 588-589 ◽  
pp. 1503-1506
Author(s):  
Fang Ding ◽  
Tao Ma

This Temperature control system of aircraft cabin is a complex system with nonlinear, time-varying, model inaccurate and work environment uncertain. According to the system control requirements, the fuzzy controller with the characteristic of fast response speed, good stability and strong resistance to interference is used in the study. The system error is adjusted constantly by using fuzzy control algorithm and simulation study is conducted in the software Matlab. The results are showed that control effect of control method used in this study is better than the traditional PID control method, and dynamic performance, steady state accuracy and robustness of system is effectively improved.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zhaohong Zheng ◽  
Tianxia Zhang ◽  
Jiaxiang Xue

To realize the maximum power output of a grid-connected inverter, the MPPT (maximum power point tracking) control method is needed. The perturbation and observation (P&O) method can cause the inverter operating point to oscillate near the maximum power. In this paper, the fuzzy control P&O method is proposed, and the fuzzy control algorithm is applied to the disturbance observation method. The simulation results of the P&O method with fuzzy control and the traditional P&O method prove that not only can the new method reduce the power loss caused by inverter oscillation during maximum power point tracking, but also it has the advantage of speed. Inductive loads in the post-grid-connected stage cause grid-connected current distortion. A fuzzy control algorithm is added to the traditional deadbeat grid-connected control method to improve the quality of the system’s grid-connected operation. The fuzzy deadbeat control method is verified by experiments, and the harmonic current of the grid-connected current is less than 3%.


2011 ◽  
Vol 128-129 ◽  
pp. 15-19
Author(s):  
Bo Fu ◽  
Lu Yu ◽  
Qiong Cheng ◽  
Xin Chen Cai ◽  
Xin Xing

Maximum Power Point Tracking control method based on traditional fuzzy algorithm has disadvantages of slow response and unstable output. To solve the problems, a modified fuzzy control algorithm by combining the traditional two-dimensional fuzzy control with a time-delayed feedback is proposed. It not only fast responds to the changes in ambient environment but also has good stability. Simulation results show that the proposed algorithm has superior performance to the traditional fuzzy control.


Author(s):  
Baoyu Shi ◽  
Hongtao Wu

Path planning technology is one of the core technologies of intelligent space robot. Combining image recognition technology and artificial intelligence learning algorithm for robot path planning in unknown space environment has become one of the hot research issues. The purpose of this paper is to propose a spatial robot path planning method based on improved fuzzy control, aiming at the shortcomings of path planning in the current industrial space robot motion control process, and based on fuzzy control algorithm. This paper proposes a fuzzy obstacle avoidance method with speed feedback based on the original advantages of the fuzzy algorithm, which improves the obstacle avoidance performance of space robot under continuous obstacles. At the same time, we integrated the improved fuzzy obstacle avoidance strategy into the behavior-based control technology, making the avoidance become an independent behavioral unit. Divide the path planning into a series of relatively independent behaviors such as fuzzy obstacle avoidance, cruise, trend target, and deadlock by the behavior-based method. According to the interaction information between the space robot and the environment, each behavior acquires the dominance of the robot through the competition mechanism, making the robot complete the specific behavior at a certain moment, and finally realize the path planning. Furthermore, to improve the overall fault tolerance of the space, robot we introduced an elegant downgrade strategy, so that the robot can successfully complete the established task in the case of control command deterioration or failure of important information, avoiding the overall performance deterioration effectively. Therefore, through the simulation experiment of the virtual environment platform, MobotSim concluded that the improved algorithm has high efficiency, high security, and the planned path is more in line with the actual situation, and the method proposed in this paper can make the space robot successfully reach the target position and optimize the spatial path, it also has good robustness and effectiveness.


2012 ◽  
Vol 430-432 ◽  
pp. 1472-1476
Author(s):  
Jin Ming Yang ◽  
Yi Lin

This article describes the development of a dedicated controller for HVAC control, and introduces the hardware interface circuits about some main chip on controller. In addition, the article also explains composition and principle about control software applied to the controller, further more points out that the fuzzy control algorithm is more reasonable than the PID algorithm for most HVAC control and dedicated control strategies play an important role for HVAC control.


1999 ◽  
Author(s):  
Masatake Shiraishi ◽  
Gongjun Yang

Abstract A laser displacement sensor which has a resolution of 0.5 μm was used to determine the measurement of a curved workpiece profile in turning. This sensor is attached to a specially designed stage and is operated by three motors which are controlled by a fuzzy control algorithm. The experimental results show that the measuring system can be applied to workpieces having inclination angles of up to around 45°. The proposed measuring system has a practical measuring accuracy to within ten micrometers.


Sign in / Sign up

Export Citation Format

Share Document