The Influence of Current Density for Zinc Electrodeposition on Color Appearance of Black Trivalent Chromate Conversion Coatings

2015 ◽  
Vol 658 ◽  
pp. 161-166
Author(s):  
Nirada Pintuperakovit ◽  
Waleed Mohammed ◽  
Patama Visuttipitukul ◽  
Sittha Sukkasi ◽  
Yuttanant Boonyongmaneerat

Chromate conversion coating is an important surface finishing process for electroplated zinc coatings that are widely employed in automotive applications. In addition to providing enhanced corrosion protection, the conversion coating offers a shade of colors to the coated products, both for aesthetic and functional benefits. Due to the stringent requirements on environmental issues, the industry is replacing the conventional hexavalent chromate with a more environmentally friendly trivalent chromate for the production of coatings. This effectively poses the requirement of the fundamental understanding on how the keys processing parameters of trivalent chromate conversion coating may relate to coloring of the coating products.In this work, for the first time, a systematic study is carried out to correlate the electroplating parameters, including the current density and electrolyte’s additives, on the formation of the trivalent chromate conversion coating, and hence the color appearance of the top-coats. Focusing on the black conversion coating, the color and optical properties are analyzed using a colorimeter and an optical spectrometer. The results notably show that, while the additives highly influence the observable shade of blackness, current density affects the optical properties in the visual spectrums. The microstructural and chemical characterization techniques, namely FE-SEM, OM, and XRD, are used to shed some light on the underlying mechanism that controls the color appearance. The understanding developed in this study will impact the design and fabrication of the electrogalvanizing products of desired color and esteemed functional performance.

2004 ◽  
Vol 151 (6) ◽  
pp. B359 ◽  
Author(s):  
P. Campestrini ◽  
H. Terryn ◽  
J. Vereecken ◽  
J. H. W. de Wit

2017 ◽  
Vol 82 (5) ◽  
pp. 539-550
Author(s):  
Nebojsa Nikolic ◽  
Predrag Zivkovic ◽  
Goran Brankovic ◽  
Miomir Pavlovic

The processes of lead and zinc electrodeposition from the very dilute electrolytes were compared by the analysis of polarization characteristics and by the scanning electron microscopic (SEM) analysis of the morphology of the deposits obtained in the galvanostatic regime of electrolysis. The exchange current densities for lead and zinc were estimated by comparison of experimentally obtained polarization curves with the simulated ones obtained for the different the exchange current density to the limiting diffusion current density ratios. Using this way for the estimation of the exchange current density, it is shown that the exchange current density for Pb was more than 1300 times higher than the one for Zn. In this way, it is confirmed that the Pb electrodeposition processes are considerably faster than the Zn electrodeposition processes. The difference in the rate of electrochemical processes was confirmed by a comparison of morphologies of lead and zinc deposits obtained at current densities which corresponded to 0.25 and 0.50 values of the limiting diffusion current densities.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 397 ◽  
Author(s):  
Hehong Zhang ◽  
Xiaofeng Zhang ◽  
Xuhui Zhao ◽  
Yuming Tang ◽  
Yu Zuo

A chemical conversion coating on 5052 aluminum alloy was prepared by using K2ZrF6 and K2TiF6 as the main salts, KMnO4 as the oxidant and NaF as the accelerant. The surface morphology, structure and composition were analyzed by SEM, EDS, FT–IR and XPS. The corrosion resistance of the conversion coating was studied by salt water immersion and polarization curve analysis. The influence of fluorosilane (FAS-17) surface modification on its antifouling property was also discussed. The results showed that the prepared conversion coating mainly consisted of AlF3·3H2O, Al2O3, MnO2 and TiO2, and exhibited good corrosion resistance. Its corrosion potential in 3.5 wt % NaCl solution was positively shifted about 590 mV and the corrosion current density was dropped from 1.10 to 0.48 μA cm−2. By sealing treatment in NiF2 solution, its corrosion resistance was further improved yielding a corrosion current density drop of 0.04 μA cm−2. By fluorosilane (FAS-17) surface modification, the conversion coating became hydrophobic due to low-surface-energy groups such as CF2 and CF3, and the contact angle reached 136.8°. Moreover, by FAS-17 modification, the corrosion resistance was enhanced significantly and its corrosion rate decreased by about 25 times.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 648 ◽  
Author(s):  
Hong-Gyu Park ◽  
Sang-Geon Park

We report the electro-optical properties of an organic thin-film by varying the thickness of 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT(CN)6), included therein as an interlayer. Devices with HAT(CN)6, which are 7 nm thin films used as interlayers, exhibited good current density–voltage characteristics due to an improved hole injection barrier resulting from carrier ladder effects and carrier transport phenomena. The device without an interlayer showed the worst driving voltage characteristics due to the hole injection barrier. At low driving voltages, a device using 7 nm HAT(CN)6 as an interlayer exhibited a current density about 9.9 times higher than that of a device using 20 nm HAT(CN)6, and showed a current density about 9600 times higher than that of a device without an interlayer. Due to the proper carrier balance, the device using 7 nm HAT(CN)6 as an interlayer achieved a maximum current efficiency of 10.8 cd/A, which was the highest among the devices studied. This shows that the electro-optical properties of devices using HAT(CN)6 as an interlayer are dominated by the holes.


Sign in / Sign up

Export Citation Format

Share Document